Multi-View Empowered Structural Graph Wordification for Language Models
- URL: http://arxiv.org/abs/2406.15504v3
- Date: Sat, 28 Dec 2024 08:16:58 GMT
- Title: Multi-View Empowered Structural Graph Wordification for Language Models
- Authors: Zipeng Liu, Likang Wu, Ming He, Zhong Guan, Hongke Zhao, Nan Feng,
- Abstract summary: We introduce an end-to-end modality-aligning framework for LLM-graph alignment: Dual-Residual Vector Quantized-Variational AutoEncoder, namely Dr.E.<n>Our approach is purposefully designed to facilitate token-level alignment with LLMs, enabling an effective translation of the intrinsic'of graphs into comprehensible natural language.<n>Our framework ensures certain visual interpretability, efficiency, and robustness, marking the promising successful endeavor to achieve token-level alignment between LLMs and GNNs.
- Score: 12.22063024099311
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Significant efforts have been dedicated to integrating the powerful Large Language Models (LLMs) with diverse modalities, particularly focusing on the fusion of language, vision and audio data. However, the graph-structured data, which is inherently rich in structural and domain-specific knowledge, has not yet been gracefully adapted to LLMs. Existing methods either describe the graph with raw text, suffering the loss of graph structural information, or feed Graph Neural Network (GNN) embeddings into LLMs at the cost of losing explainable prompt semantics. To bridge this gap, we introduce an end-to-end modality-aligning framework for LLM-graph alignment: Dual-Residual Vector Quantized-Variational AutoEncoder, namely Dr.E. Our approach is purposefully designed to facilitate token-level alignment with LLMs, enabling an effective translation of the intrinsic `language' of graphs into comprehensible natural language. We also manage to enhance LLMs' more robust structural understanding of graphs by incorporating multiple views of the central nodes based on their surrounding nodes at various distances. Our experimental evaluations on standard graph tasks demonstrate competitive performance against other state-of-the-art (SOTA) approaches. Additionally, our framework ensures certain visual interpretability, efficiency, and robustness, marking the promising successful endeavor to achieve token-level alignment between LLMs and GNNs. Our code is available at: https://github.com/Timothy914/Dr.E.
Related papers
- Refining Interactions: Enhancing Anisotropy in Graph Neural Networks with Language Semantics [6.273224130511677]
We introduce LanSAGNN (Language Semantic Anisotropic Graph Neural Network), a framework that extends the concept of anisotropic GNNs to the natural language level.
We propose an efficient dual-layer LLMs finetuning architecture to better align LLMs' outputs with graph tasks.
arXiv Detail & Related papers (2025-04-02T07:32:45Z) - LLM as GNN: Graph Vocabulary Learning for Text-Attributed Graph Foundation Models [54.82915844507371]
Text-Attributed Graphs (TAGs) are ubiquitous in real-world scenarios.
Despite large efforts to integrate Large Language Models (LLMs) and Graph Neural Networks (GNNs) for TAGs, existing approaches suffer from decoupled architectures.
We propose PromptGFM, a versatile GFM for TAGs grounded in graph vocabulary learning.
arXiv Detail & Related papers (2025-03-05T09:45:22Z) - Training Large Recommendation Models via Graph-Language Token Alignment [53.3142545812349]
We propose a novel framework to train Large Recommendation models via Graph-Language Token Alignment.
By aligning item and user nodes from the interaction graph with pretrained LLM tokens, GLTA effectively leverages the reasoning abilities of LLMs.
Furthermore, we introduce Graph-Language Logits Matching (GLLM) to optimize token alignment for end-to-end item prediction.
arXiv Detail & Related papers (2025-02-26T02:19:10Z) - Are Large Language Models In-Context Graph Learners? [31.172657860606297]
Large language models (LLMs) have remarkable in-context reasoning capabilities across a wide range of tasks.
However, they struggle to handle structured data, such as graphs, due to their lack of understanding of non-Euclidean structures.
We show that learning on graph data can be conceptualized as a retrieval-augmented generation (RAG) process.
We propose a series of RAG frameworks to enhance the in-context learning capabilities of LLMs for graph learning tasks.
arXiv Detail & Related papers (2025-02-19T09:14:19Z) - Deep Semantic Graph Learning via LLM based Node Enhancement [5.312946761836463]
Large Language Models (LLMs) have demonstrated superior capabilities in understanding text semantics.
This paper proposes a novel framework that combines Graph Transformer architecture with LLM-enhanced node features.
arXiv Detail & Related papers (2025-02-11T21:55:46Z) - Bridging Large Language Models and Graph Structure Learning Models for Robust Representation Learning [22.993015048941444]
Graph representation learning is crucial for real-world applications but often encounters pervasive noise.
We introduce LangGSL, a framework that integrates the complementary strengths of pre-trained language models and graph structure learning models.
arXiv Detail & Related papers (2024-10-15T22:43:32Z) - NT-LLM: A Novel Node Tokenizer for Integrating Graph Structure into Large Language Models [26.739650151993928]
Graphs are a fundamental data structure for representing relationships in real-world scenarios.
Applying Large Language Models (LLMs) to graph-related tasks poses significant challenges.
We introduce Node Tokenizer for Large Language Models (NT-LLM), a novel framework that efficiently encodes graph structures.
arXiv Detail & Related papers (2024-10-14T17:21:57Z) - Let's Ask GNN: Empowering Large Language Model for Graph In-Context Learning [28.660326096652437]
We introduce AskGNN, a novel approach that bridges the gap between sequential text processing and graph-structured data.
AskGNN employs a Graph Neural Network (GNN)-powered structure-enhanced retriever to select labeled nodes across graphs.
Experiments across three tasks and seven LLMs demonstrate AskGNN's superior effectiveness in graph task performance.
arXiv Detail & Related papers (2024-10-09T17:19:12Z) - All Against Some: Efficient Integration of Large Language Models for Message Passing in Graph Neural Networks [51.19110891434727]
Large Language Models (LLMs) with pretrained knowledge and powerful semantic comprehension abilities have recently shown a remarkable ability to benefit applications using vision and text data.
E-LLaGNN is a framework with an on-demand LLM service that enriches message passing procedure of graph learning by enhancing a limited fraction of nodes from the graph.
arXiv Detail & Related papers (2024-07-20T22:09:42Z) - Parameter-Efficient Tuning Large Language Models for Graph Representation Learning [62.26278815157628]
We introduce Graph-aware.
Efficient Fine-Tuning - GPEFT, a novel approach for efficient graph representation learning.
We use a graph neural network (GNN) to encode structural information from neighboring nodes into a graph prompt.
We validate our approach through comprehensive experiments conducted on 8 different text-rich graphs, observing an average improvement of 2% in hit@1 and Mean Reciprocal Rank (MRR) in link prediction evaluations.
arXiv Detail & Related papers (2024-04-28T18:36:59Z) - GraphEdit: Large Language Models for Graph Structure Learning [62.618818029177355]
Graph Structure Learning (GSL) focuses on capturing intrinsic dependencies and interactions among nodes in graph-structured data.
Existing GSL methods heavily depend on explicit graph structural information as supervision signals.
We propose GraphEdit, an approach that leverages large language models (LLMs) to learn complex node relationships in graph-structured data.
arXiv Detail & Related papers (2024-02-23T08:29:42Z) - Large Language Models on Graphs: A Comprehensive Survey [77.16803297418201]
We provide a systematic review of scenarios and techniques related to large language models on graphs.
We first summarize potential scenarios of adopting LLMs on graphs into three categories, namely pure graphs, text-attributed graphs, and text-paired graphs.
We discuss the real-world applications of such methods and summarize open-source codes and benchmark datasets.
arXiv Detail & Related papers (2023-12-05T14:14:27Z) - Disentangled Representation Learning with Large Language Models for
Text-Attributed Graphs [57.052160123387104]
We present the Disentangled Graph-Text Learner (DGTL) model, which is able to enhance the reasoning and predicting capabilities of LLMs for TAGs.
Our proposed DGTL model incorporates graph structure information through tailored disentangled graph neural network (GNN) layers.
Experimental evaluations demonstrate the effectiveness of the proposed DGTL model on achieving superior or comparable performance over state-of-the-art baselines.
arXiv Detail & Related papers (2023-10-27T14:00:04Z) - Beyond Text: A Deep Dive into Large Language Models' Ability on
Understanding Graph Data [13.524529952170672]
Large language models (LLMs) have achieved impressive performance on many natural language processing tasks.
We aim to assess whether LLMs can effectively process graph data and leverage topological structures to enhance performance.
By comparing LLMs' performance with specialized graph models, we offer insights into the strengths and limitations of employing LLMs for graph analytics.
arXiv Detail & Related papers (2023-10-07T23:25:22Z) - Exploring the Potential of Large Language Models (LLMs) in Learning on
Graphs [59.74814230246034]
Large Language Models (LLMs) have been proven to possess extensive common knowledge and powerful semantic comprehension abilities.
We investigate two possible pipelines: LLMs-as-Enhancers and LLMs-as-Predictors.
arXiv Detail & Related papers (2023-07-07T05:31:31Z) - Harnessing Explanations: LLM-to-LM Interpreter for Enhanced
Text-Attributed Graph Representation Learning [51.90524745663737]
A key innovation is our use of explanations as features, which can be used to boost GNN performance on downstream tasks.
Our method achieves state-of-the-art results on well-established TAG datasets.
Our method significantly speeds up training, achieving a 2.88 times improvement over the closest baseline on ogbn-arxiv.
arXiv Detail & Related papers (2023-05-31T03:18:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.