Unifying Unsupervised Graph-Level Anomaly Detection and Out-of-Distribution Detection: A Benchmark
- URL: http://arxiv.org/abs/2406.15523v1
- Date: Fri, 21 Jun 2024 04:07:43 GMT
- Title: Unifying Unsupervised Graph-Level Anomaly Detection and Out-of-Distribution Detection: A Benchmark
- Authors: Yili Wang, Yixin Liu, Xu Shen, Chenyu Li, Kaize Ding, Rui Miao, Ying Wang, Shirui Pan, Xin Wang,
- Abstract summary: Unsupervised graph-level anomaly detection (GLAD) and unsupervised graph-level out-of-distribution (OOD) detection have received significant attention in recent years.
We present a Unified Benchmark for unsupervised Graph-level OOD and anomaly Detection (our method)
Our benchmark encompasses 35 datasets spanning four practical anomaly and OOD detection scenarios.
We conduct multi-dimensional analyses to explore the effectiveness, generalizability, robustness, and efficiency of existing methods.
- Score: 73.58840254552656
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To build safe and reliable graph machine learning systems, unsupervised graph-level anomaly detection (GLAD) and unsupervised graph-level out-of-distribution (OOD) detection (GLOD) have received significant attention in recent years. Though those two lines of research indeed share the same objective, they have been studied independently in the community due to distinct evaluation setups, creating a gap that hinders the application and evaluation of methods from one to the other. To bridge the gap, in this work, we present a Unified Benchmark for unsupervised Graph-level OOD and anomaly Detection (our method), a comprehensive evaluation framework that unifies GLAD and GLOD under the concept of generalized graph-level OOD detection. Our benchmark encompasses 35 datasets spanning four practical anomaly and OOD detection scenarios, facilitating the comparison of 16 representative GLAD/GLOD methods. We conduct multi-dimensional analyses to explore the effectiveness, generalizability, robustness, and efficiency of existing methods, shedding light on their strengths and limitations. Furthermore, we provide an open-source codebase (https://github.com/UB-GOLD/UB-GOLD) of our method to foster reproducible research and outline potential directions for future investigations based on our insights.
Related papers
- Dissecting Out-of-Distribution Detection and Open-Set Recognition: A Critical Analysis of Methods and Benchmarks [17.520137576423593]
We aim to provide a consolidated view of the two largest sub-fields within the community: out-of-distribution (OOD) detection and open-set recognition (OSR)
We perform rigorous cross-evaluation between state-of-the-art methods in the OOD detection and OSR settings and identify a strong correlation between the performances of methods for them.
We propose a new, large-scale benchmark setting which we suggest better disentangles the problem tackled by OOD detection and OSR.
arXiv Detail & Related papers (2024-08-29T17:55:07Z) - HGOE: Hybrid External and Internal Graph Outlier Exposure for Graph Out-of-Distribution Detection [78.47008997035158]
Graph data exhibits greater diversity but lower robustness to perturbations, complicating the integration of outliers.
We propose the introduction of textbfHybrid External and Internal textbfGraph textbfOutlier textbfExposure (HGOE) to improve graph OOD detection performance.
arXiv Detail & Related papers (2024-07-31T16:55:18Z) - Open-World Lifelong Graph Learning [7.535219325248997]
We study the problem of lifelong graph learning in an open-world scenario.
We utilize Out-of-Distribution (OOD) detection methods to recognize new classes.
We suggest performing new class detection by combining OOD detection methods with information aggregated from the graph neighborhood.
arXiv Detail & Related papers (2023-10-19T08:18:10Z) - BOURNE: Bootstrapped Self-supervised Learning Framework for Unified
Graph Anomaly Detection [50.26074811655596]
We propose a novel unified graph anomaly detection framework based on bootstrapped self-supervised learning (named BOURNE)
By swapping the context embeddings between nodes and edges, we enable the mutual detection of node and edge anomalies.
BOURNE can eliminate the need for negative sampling, thereby enhancing its efficiency in handling large graphs.
arXiv Detail & Related papers (2023-07-28T00:44:57Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
We propose a simple, powerful and efficient OOD detection model for GNN-based learning on graphs, which we call GNNSafe.
GNNSafe achieves up to $17.0%$ AUROC improvement over state-of-the-arts and it could serve as simple yet strong baselines in such an under-developed area.
arXiv Detail & Related papers (2023-02-06T16:38:43Z) - GOOD-D: On Unsupervised Graph Out-Of-Distribution Detection [67.90365841083951]
We develop a new graph contrastive learning framework GOOD-D for detecting OOD graphs without using any ground-truth labels.
GOOD-D is able to capture the latent ID patterns and accurately detect OOD graphs based on the semantic inconsistency in different granularities.
As a pioneering work in unsupervised graph-level OOD detection, we build a comprehensive benchmark to compare our proposed approach with different state-of-the-art methods.
arXiv Detail & Related papers (2022-11-08T12:41:58Z) - Benchmarking Node Outlier Detection on Graphs [90.29966986023403]
Graph outlier detection is an emerging but crucial machine learning task with numerous applications.
We present the first comprehensive unsupervised node outlier detection benchmark for graphs called UNOD.
arXiv Detail & Related papers (2022-06-21T01:46:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.