Benchmarking Uncertainty Quantification Methods for Large Language Models with LM-Polygraph
- URL: http://arxiv.org/abs/2406.15627v3
- Date: Fri, 10 Jan 2025 10:24:19 GMT
- Title: Benchmarking Uncertainty Quantification Methods for Large Language Models with LM-Polygraph
- Authors: Roman Vashurin, Ekaterina Fadeeva, Artem Vazhentsev, Lyudmila Rvanova, Akim Tsvigun, Daniil Vasilev, Rui Xing, Abdelrahman Boda Sadallah, Kirill Grishchenkov, Sergey Petrakov, Alexander Panchenko, Timothy Baldwin, Preslav Nakov, Maxim Panov, Artem Shelmanov,
- Abstract summary: Uncertainty quantification is a key element of machine learning applications.
We introduce a novel benchmark that implements a collection of state-of-the-art UQ baselines.
We conduct a large-scale empirical investigation of UQ and normalization techniques across eleven tasks, identifying the most effective approaches.
- Score: 83.90988015005934
- License:
- Abstract: The rapid proliferation of large language models (LLMs) has stimulated researchers to seek effective and efficient approaches to deal with LLM hallucinations and low-quality outputs. Uncertainty quantification (UQ) is a key element of machine learning applications in dealing with such challenges. However, research to date on UQ for LLMs has been fragmented in terms of techniques and evaluation methodologies. In this work, we address this issue by introducing a novel benchmark that implements a collection of state-of-the-art UQ baselines and offers an environment for controllable and consistent evaluation of novel UQ techniques over various text generation tasks. Our benchmark also supports the assessment of confidence normalization methods in terms of their ability to provide interpretable scores. Using our benchmark, we conduct a large-scale empirical investigation of UQ and normalization techniques across eleven tasks, identifying the most effective approaches. Code: https://github.com/IINemo/lm-polygraph Benchmark: https://huggingface.co/LM-Polygraph
Related papers
- Token-Level Density-Based Uncertainty Quantification Methods for Eliciting Truthfulness of Large Language Models [76.17975723711886]
Uncertainty quantification (UQ) is a prominent approach for eliciting truthful answers from large language models (LLMs)
In this work, we adapt Mahalanobis Distance (MD) - a well-established UQ technique in classification tasks - for text generation.
Our method extracts token embeddings from multiple layers of LLMs, computes MD scores for each token, and uses linear regression trained on these features to provide robust uncertainty scores.
arXiv Detail & Related papers (2025-02-20T10:25:13Z) - CoCoA: A Generalized Approach to Uncertainty Quantification by Integrating Confidence and Consistency of LLM Outputs [35.74755307680801]
Uncertainty quantification (UQ) methods for Large Language Models (LLMs) encompasses a variety of approaches.
We propose a new way of synthesizing model confidence and output consistency that leads to a family of efficient and robust UQ methods.
arXiv Detail & Related papers (2025-02-07T14:30:12Z) - A Preliminary Study of Multilingual Code Language Models for Code Generation Task Using Translated Benchmarks [0.0]
We evaluate the performance of Poly-Coder, a pioneering open-source, multilingual CLM built for code generation.
Our results suggest that the outcomes observed in these translated benchmarks align well with evaluation metrics used during the training phase.
These initial insights highlight the need for more comprehensive empirical studies.
arXiv Detail & Related papers (2024-11-23T06:40:47Z) - Detecting Hallucinations in Large Language Model Generation: A Token Probability Approach [0.0]
Large Language Models (LLMs) produce inaccurate outputs, also known as hallucinations.
This paper introduces a supervised learning approach employing only four numerical features derived from tokens and vocabulary probabilities obtained from other evaluators.
The method yields promising results, surpassing state-of-the-art outcomes in multiple tasks across three different benchmarks.
arXiv Detail & Related papers (2024-05-30T03:00:47Z) - RepEval: Effective Text Evaluation with LLM Representation [55.26340302485898]
RepEval is a metric that leverages the projection of Large Language Models (LLMs) representations for evaluation.
Our work underscores the richness of information regarding text quality embedded within LLM representations, offering insights for the development of new metrics.
arXiv Detail & Related papers (2024-04-30T13:50:55Z) - LUQ: Long-text Uncertainty Quantification for LLMs [29.987010627250527]
Large Language Models (LLMs) are prone to generate nonfactual content.
Uncertainty Quantification (UQ) is pivotal in enhancing our understanding of a model's confidence on its generation.
We propose textscLuq-Ensemble, a method that ensembles responses from multiple models and selects the response with the lowest uncertainty.
arXiv Detail & Related papers (2024-03-29T16:49:24Z) - InfiMM-Eval: Complex Open-Ended Reasoning Evaluation For Multi-Modal
Large Language Models [50.03163753638256]
Multi-modal Large Language Models (MLLMs) are increasingly prominent in the field of artificial intelligence.
Our benchmark comprises three key reasoning categories: deductive, abductive, and analogical reasoning.
We evaluate a selection of representative MLLMs using this rigorously developed open-ended multi-step elaborate reasoning benchmark.
arXiv Detail & Related papers (2023-11-20T07:06:31Z) - LM-Polygraph: Uncertainty Estimation for Language Models [71.21409522341482]
Uncertainty estimation (UE) methods are one path to safer, more responsible, and more effective use of large language models (LLMs)
We introduce LM-Polygraph, a framework with implementations of a battery of state-of-the-art UE methods for LLMs in text generation tasks, with unified program interfaces in Python.
It introduces an extendable benchmark for consistent evaluation of UE techniques by researchers, and a demo web application that enriches the standard chat dialog with confidence scores.
arXiv Detail & Related papers (2023-11-13T15:08:59Z) - Text Generation with Efficient (Soft) Q-Learning [91.47743595382758]
Reinforcement learning (RL) offers a more flexible solution by allowing users to plug in arbitrary task metrics as reward.
We introduce a new RL formulation for text generation from the soft Q-learning perspective.
We apply the approach to a wide range of tasks, including learning from noisy/negative examples, adversarial attacks, and prompt generation.
arXiv Detail & Related papers (2021-06-14T18:48:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.