LUQ: Long-text Uncertainty Quantification for LLMs
- URL: http://arxiv.org/abs/2403.20279v3
- Date: Fri, 04 Oct 2024 09:19:07 GMT
- Title: LUQ: Long-text Uncertainty Quantification for LLMs
- Authors: Caiqi Zhang, Fangyu Liu, Marco Basaldella, Nigel Collier,
- Abstract summary: Large Language Models (LLMs) are prone to generate nonfactual content.
Uncertainty Quantification (UQ) is pivotal in enhancing our understanding of a model's confidence on its generation.
We propose textscLuq-Ensemble, a method that ensembles responses from multiple models and selects the response with the lowest uncertainty.
- Score: 29.987010627250527
- License:
- Abstract: Large Language Models (LLMs) have demonstrated remarkable capability in a variety of NLP tasks. However, LLMs are also prone to generate nonfactual content. Uncertainty Quantification (UQ) is pivotal in enhancing our understanding of a model's confidence on its generation, thereby aiding in the mitigation of nonfactual outputs. Existing research on UQ predominantly targets short text generation, typically yielding brief, word-limited responses. However, real-world applications frequently necessitate much longer responses. Our study first highlights the limitations of current UQ methods in handling long text generation. We then introduce \textsc{Luq} and its two variations, a series of novel sampling-based UQ approaches specifically designed for long text. Our findings reveal that \textsc{Luq} outperforms existing baseline methods in correlating with the model's factuality scores (negative coefficient of -0.85 observed for Gemini Pro). To further improve the factuality of LLM responses, we propose \textsc{Luq-Ensemble}, a method that ensembles responses from multiple models and selects the response with the lowest uncertainty. The ensembling method greatly improves the response factuality upon the best standalone LLM.
Related papers
- Token-Level Density-Based Uncertainty Quantification Methods for Eliciting Truthfulness of Large Language Models [76.17975723711886]
Uncertainty quantification (UQ) is a prominent approach for eliciting truthful answers from large language models (LLMs)
In this work, we adapt Mahalanobis Distance (MD) - a well-established UQ technique in classification tasks - for text generation.
Our method extracts token embeddings from multiple layers of LLMs, computes MD scores for each token, and uses linear regression trained on these features to provide robust uncertainty scores.
arXiv Detail & Related papers (2025-02-20T10:25:13Z) - Benchmarking Uncertainty Quantification Methods for Large Language Models with LM-Polygraph [83.90988015005934]
Uncertainty quantification is a key element of machine learning applications.
We introduce a novel benchmark that implements a collection of state-of-the-art UQ baselines.
We conduct a large-scale empirical investigation of UQ and normalization techniques across eleven tasks, identifying the most effective approaches.
arXiv Detail & Related papers (2024-06-21T20:06:31Z) - Nearest Neighbor Speculative Decoding for LLM Generation and Attribution [87.3259169631789]
Nearest Speculative Decoding (NEST) is capable of incorporating real-world text spans of arbitrary length into the LM generations and providing attribution to their sources.
NEST significantly enhances the generation quality and attribution rate of the base LM across a variety of knowledge-intensive tasks.
In addition, NEST substantially improves the generation speed, achieving a 1.8x speedup in inference time when applied to Llama-2-Chat 70B.
arXiv Detail & Related papers (2024-05-29T17:55:03Z) - NovelQA: Benchmarking Question Answering on Documents Exceeding 200K Tokens [63.7488938083696]
NovelQA is a benchmark designed to test the capabilities of Large Language Models with extended texts.
This paper presents the design and construction of NovelQA, highlighting its manual annotation, and diverse question types.
Our evaluation of Long-context LLMs on NovelQA reveals significant insights into the models' performance.
arXiv Detail & Related papers (2024-03-18T17:32:32Z) - LLMRefine: Pinpointing and Refining Large Language Models via Fine-Grained Actionable Feedback [65.84061725174269]
Recent large language models (LLM) are leveraging human feedback to improve their generation quality.
We propose LLMRefine, an inference time optimization method to refine LLM's output.
We conduct experiments on three text generation tasks, including machine translation, long-form question answering (QA), and topical summarization.
LLMRefine consistently outperforms all baseline approaches, achieving improvements up to 1.7 MetricX points on translation tasks, 8.1 ROUGE-L on ASQA, 2.2 ROUGE-L on topical summarization.
arXiv Detail & Related papers (2023-11-15T19:52:11Z) - Are Large Language Models Really Robust to Word-Level Perturbations? [68.60618778027694]
We propose a novel rational evaluation approach that leverages pre-trained reward models as diagnostic tools.
Longer conversations manifest the comprehensive grasp of language models in terms of their proficiency in understanding questions.
Our results demonstrate that LLMs frequently exhibit vulnerability to word-level perturbations that are commonplace in daily language usage.
arXiv Detail & Related papers (2023-09-20T09:23:46Z) - Shifting Attention to Relevance: Towards the Predictive Uncertainty Quantification of Free-Form Large Language Models [27.491408293411734]
Large Language Models (LLMs) show promising results in language generation and instruction following but frequently "hallucinate"
Our research introduces a simple redundancy: not all tokens in auto-regressive text equally represent the underlying meaning.
arXiv Detail & Related papers (2023-07-03T22:17:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.