論文の概要: DataFreeShield: Defending Adversarial Attacks without Training Data
- arxiv url: http://arxiv.org/abs/2406.15635v1
- Date: Fri, 21 Jun 2024 20:24:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 21:14:22.465307
- Title: DataFreeShield: Defending Adversarial Attacks without Training Data
- Title(参考訳): DataFreeShield: トレーニングデータなしで敵攻撃を防御する
- Authors: Hyeyoon Lee, Kanghyun Choi, Dain Kwon, Sunjong Park, Mayoore Selvarasa Jaiswal, Noseong Park, Jonghyun Choi, Jinho Lee,
- Abstract要約: 実データにアクセスせずにロバスト性を達成しようとする,データフリーの対向ロバスト性の問題について検討する。
本稿では,データセット生成と逆トレーニングという2つの観点からこの問題に対処するDataFreeShieldを提案する。
本稿では,DataFreeShieldがベースラインよりも優れていることを示すとともに,提案手法が対向ロバスト性問題に対する最初の完全データフリーソリューションであることを示す。
- 参考スコア(独自算出の注目度): 32.29186953320468
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent advances in adversarial robustness rely on an abundant set of training data, where using external or additional datasets has become a common setting. However, in real life, the training data is often kept private for security and privacy issues, while only the pretrained weight is available to the public. In such scenarios, existing methods that assume accessibility to the original data become inapplicable. Thus we investigate the pivotal problem of data-free adversarial robustness, where we try to achieve adversarial robustness without accessing any real data. Through a preliminary study, we highlight the severity of the problem by showing that robustness without the original dataset is difficult to achieve, even with similar domain datasets. To address this issue, we propose DataFreeShield, which tackles the problem from two perspectives: surrogate dataset generation and adversarial training using the generated data. Through extensive validation, we show that DataFreeShield outperforms baselines, demonstrating that the proposed method sets the first entirely data-free solution for the adversarial robustness problem.
- Abstract(参考訳): 近年の対人ロバスト性の進歩は、外部または追加のデータセットを使用することが一般的な設定となっている、豊富なトレーニングデータのセットに依存している。
しかし、実生活では、トレーニングデータはセキュリティやプライバシーの問題のためにプライベートに保管されることが多い。
このようなシナリオでは、元のデータへのアクセシビリティを前提とする既存のメソッドは適用不可能になる。
そこで本研究では, 実データにアクセスすることなく, 対向ロバスト性を実現するためのデータ自由対向ロバスト性の重要課題について検討する。
予備的な研究を通じて、同じドメインデータセットであっても、元のデータセットなしでは堅牢性が達成し難いことを示すことで、問題の深刻さを強調した。
この問題に対処するために、データセット生成の代理と、生成されたデータを用いた逆トレーニングという2つの視点から問題に取り組むDataFreeShieldを提案する。
大規模な検証により,DataFreeShieldはベースラインよりも優れた性能を示し,提案手法が対向ロバスト性問題に対する最初の完全データフリーソリューションとなることを示した。
関連論文リスト
- Towards Generalizable Data Protection With Transferable Unlearnable
Examples [50.628011208660645]
本稿では、転送不可能な例を生成することによって、新しい一般化可能なデータ保護手法を提案する。
私たちの知る限りでは、これはデータ分散の観点からデータのプライバシを調べる最初のソリューションです。
論文 参考訳(メタデータ) (2023-05-18T04:17:01Z) - Stop Uploading Test Data in Plain Text: Practical Strategies for
Mitigating Data Contamination by Evaluation Benchmarks [70.39633252935445]
データ汚染は、大規模な自動クロールコーパスで事前訓練されたモデルの台頭によって、普及し、課題となっている。
クローズドモデルの場合、トレーニングデータはトレードシークレットになり、オープンモデルであっても汚染を検出するのは簡単ではない。
1)公開するテストデータを公開鍵で暗号化し,デリバティブ配信を許可する,(2)クローズドAPI保持者からの要求トレーニング排他的コントロールを許可する,(2)評価を拒否してテストデータを保護する,(3)インターネット上のソリューションで表示されるデータを避け,インターネット由来のWebページコンテキストを解放する,という3つの方法を提案する。
論文 参考訳(メタデータ) (2023-05-17T12:23:38Z) - Towards Robust Dataset Learning [90.2590325441068]
本稿では,頑健なデータセット学習問題を定式化するための三段階最適化法を提案する。
ロバストな特徴と非ロバストな特徴を特徴付ける抽象モデルの下で,提案手法はロバストなデータセットを確実に学習する。
論文 参考訳(メタデータ) (2022-11-19T17:06:10Z) - Private Set Generation with Discriminative Information [63.851085173614]
異なるプライベートなデータ生成は、データプライバシの課題に対する有望な解決策である。
既存のプライベートな生成モデルは、合成サンプルの有用性に苦慮している。
我々は,最先端アプローチのサンプルユーティリティを大幅に改善する,シンプルで効果的な手法を提案する。
論文 参考訳(メタデータ) (2022-11-07T10:02:55Z) - Transferable Unlearnable Examples [63.64357484690254]
第三者が許可なくデータのトレーニングを行うのを防ぐために、学べない戦略が導入された。
公開前にユーザーのデータに摂動を追加することで、公開データセットでトレーニングされたモデルを無効にすることを目指している。
本稿では、学習不可能な効果を他のトレーニング設定やデータセットに伝達することを目的とした、クラスワイズ・セパビリティ・ディミナント(CSD)に基づく新しい学習不可能な戦略を提案する。
論文 参考訳(メタデータ) (2022-10-18T19:23:52Z) - Data Profiling for Adversarial Training: On the Ruin of Problematic Data [27.11328449349065]
相手のトレーニングの問題は、堅牢な精度のトレードオフ、堅牢なオーバーフィッティング、グラデーションマスキングです。
これらの問題は、データセットの低品質サンプルという共通の原因を共有していることを示しています。
問題のあるデータが削除されると、ロバストなオーバーフィッティングと勾配マスキングがほとんど緩和される。
論文 参考訳(メタデータ) (2021-02-15T10:17:24Z) - Data-driven Regularized Inference Privacy [33.71757542373714]
データを衛生化するためのデータ駆動推論プライバシ保護フレームワークを提案する。
我々は変分法に基づく推論プライバシ・フレームワークを開発する。
プライバシー基準を推定するための実証的手法を提案する。
論文 参考訳(メタデータ) (2020-10-10T08:42:59Z) - SPEED: Secure, PrivatE, and Efficient Deep learning [2.283665431721732]
私たちは、強力なプライバシー制約に対処できるディープラーニングフレームワークを導入します。
協調学習、差分プライバシー、同型暗号化に基づいて、提案手法は最先端技術に進化する。
論文 参考訳(メタデータ) (2020-06-16T19:31:52Z) - PrivGen: Preserving Privacy of Sequences Through Data Generation [14.579475552088688]
シークエンシャルデータは、研究の基盤として機能し、プロセスの改善につながる可能性がある。
このようなデータへのアクセスと利用は、通常、ユーザーのプライバシーを侵害する懸念のために制限されるか、まったく許可されない。
そこで我々はPrivGenを提案する。PrivGenは、ソースデータのパターンと特徴を保守するデータを生成する革新的な方法である。
論文 参考訳(メタデータ) (2020-02-23T05:43:15Z) - DeGAN : Data-Enriching GAN for Retrieving Representative Samples from a
Trained Classifier [58.979104709647295]
我々は、トレーニングされたネットワークの将来の学習タスクのために、利用可能なデータの豊富さと関連するデータの欠如の間のギャップを埋める。
利用可能なデータは、元のトレーニングデータセットまたは関連するドメインデータセットの不均衡なサブセットである可能性があるため、代表サンプルを検索するために使用します。
関連ドメインからのデータを活用して最先端のパフォーマンスを実現することを実証する。
論文 参考訳(メタデータ) (2019-12-27T02:05:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。