Efficient Human Pose Estimation: Leveraging Advanced Techniques with MediaPipe
- URL: http://arxiv.org/abs/2406.15649v2
- Date: Sat, 13 Jul 2024 16:22:15 GMT
- Title: Efficient Human Pose Estimation: Leveraging Advanced Techniques with MediaPipe
- Authors: Sandeep Singh Sengar, Abhishek Kumar, Owen Singh,
- Abstract summary: This study presents significant enhancements in human pose estimation using the MediaPipe framework.
The research focuses on improving accuracy, computational efficiency, and real-time processing capabilities.
The advancements have wide-ranging applications in augmented reality, sports analytics, and healthcare.
- Score: 5.439359582541082
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This study presents significant enhancements in human pose estimation using the MediaPipe framework. The research focuses on improving accuracy, computational efficiency, and real-time processing capabilities by comprehensively optimising the underlying algorithms. Novel modifications are introduced that substantially enhance pose estimation accuracy across challenging scenarios, such as dynamic movements and partial occlusions. The improved framework is benchmarked against traditional models, demonstrating considerable precision and computational speed gains. The advancements have wide-ranging applications in augmented reality, sports analytics, and healthcare, enabling more immersive experiences, refined performance analysis, and advanced patient monitoring. The study also explores the integration of these enhancements within mobile and embedded systems, addressing the need for computational efficiency and broader accessibility. The implications of this research set a new benchmark for real-time human pose estimation technologies and pave the way for future innovations in the field. The implementation code for the paper is available at https://github.com/avhixd/Human_pose_estimation.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Joint Hypergraph Rewiring and Memory-Augmented Forecasting Techniques in Digital Twin Technology [2.368662284133926]
Digital Twin technology creates virtual replicas of physical objects, processes, or systems by replicating their properties, data, and behaviors.
Digital Twin technology has leveraged Graph forecasting techniques in large-scale complex sensor networks to enable accurate forecasting and simulation of diverse scenarios.
We introduce a hybrid architecture that enhances the hypergraph representation learning backbone by incorporating fast adaptation to new patterns and memory-based retrieval of past knowledge.
arXiv Detail & Related papers (2024-08-22T14:08:45Z) - Parameter Efficient Fine Tuning: A Comprehensive Analysis Across Applications [0.7421845364041001]
The rise of deep learning has marked significant progress in fields such as computer vision, natural language processing, and medical imaging.
Traditional fine-tuning methods, involving adjustments to all parameters, face challenges due to high computational and memory demands.
This review examines Efficient Fine-Tuning (PEFT) techniques, which selectively update parameters to balance computational efficiency with performance.
arXiv Detail & Related papers (2024-04-21T02:26:15Z) - Accelerating Neural Network Training: A Brief Review [0.5825410941577593]
This study examines innovative approaches to expedite the training process of deep neural networks (DNN)
The research utilizes sophisticated methodologies, including Gradient Accumulation (GA), Automatic Mixed Precision (AMP), and Pin Memory (PM)
arXiv Detail & Related papers (2023-12-15T18:43:45Z) - Computation-efficient Deep Learning for Computer Vision: A Survey [121.84121397440337]
Deep learning models have reached or even exceeded human-level performance in a range of visual perception tasks.
Deep learning models usually demand significant computational resources, leading to impractical power consumption, latency, or carbon emissions in real-world scenarios.
New research focus is computationally efficient deep learning, which strives to achieve satisfactory performance while minimizing the computational cost during inference.
arXiv Detail & Related papers (2023-08-27T03:55:28Z) - PerfDetectiveAI -- Performance Gap Analysis and Recommendation in
Software Applications [0.0]
PerfDetectiveAI, a conceptual framework for performance gap analysis and suggestion in software applications is introduced in this research.
Modern machine learning (ML) and artificial intelligence (AI) techniques are used in PerfDetectiveAI to monitor performance measurements and identify areas of underperformance in software applications.
arXiv Detail & Related papers (2023-06-11T02:53:04Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
Existing reinforcement learning algorithms suffer from computational intractability, strong statistical assumptions, and suboptimal sample complexity.
We provide the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level.
Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics.
arXiv Detail & Related papers (2023-04-12T14:51:47Z) - On Efficient Training of Large-Scale Deep Learning Models: A Literature
Review [90.87691246153612]
The field of deep learning has witnessed significant progress, particularly in computer vision (CV), natural language processing (NLP), and speech.
The use of large-scale models trained on vast amounts of data holds immense promise for practical applications.
With the increasing demands on computational capacity, a comprehensive summarization on acceleration techniques of training deep learning models is still much anticipated.
arXiv Detail & Related papers (2023-04-07T11:13:23Z) - Deep Learning Training Procedure Augmentations [0.0]
Recent advances in Deep Learning have greatly improved performance on various tasks such as object detection, image segmentation, sentiment analysis.
While this has lead to great results, many of which with real-world applications, other relevant aspects of deep learning have remained neglected and unknown.
We will present several novel deep learning training techniques which, while capable of offering significant performance gains, also reveal several interesting analysis results regarding convergence speed, optimization landscape, and adversarial robustness.
arXiv Detail & Related papers (2022-11-25T22:31:11Z) - Dynamic Iterative Refinement for Efficient 3D Hand Pose Estimation [87.54604263202941]
We propose a tiny deep neural network of which partial layers are iteratively exploited for refining its previous estimations.
We employ learned gating criteria to decide whether to exit from the weight-sharing loop, allowing per-sample adaptation in our model.
Our method consistently outperforms state-of-the-art 2D/3D hand pose estimation approaches in terms of both accuracy and efficiency for widely used benchmarks.
arXiv Detail & Related papers (2021-11-11T23:31:34Z) - A Data and Compute Efficient Design for Limited-Resources Deep Learning [68.55415606184]
equivariant neural networks have gained increased interest in the deep learning community.
They have been successfully applied in the medical domain where symmetries in the data can be effectively exploited to build more accurate and robust models.
Mobile, on-device implementations of deep learning solutions have been developed for medical applications.
However, equivariant models are commonly implemented using large and computationally expensive architectures, not suitable to run on mobile devices.
In this work, we design and test an equivariant version of MobileNetV2 and further optimize it with model quantization to enable more efficient inference.
arXiv Detail & Related papers (2020-04-21T00:49:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.