論文の概要: Matching Problems to Solutions: An Explainable Way of Solving Machine Learning Problems
- arxiv url: http://arxiv.org/abs/2406.15662v1
- Date: Fri, 21 Jun 2024 21:39:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 21:14:22.376767
- Title: Matching Problems to Solutions: An Explainable Way of Solving Machine Learning Problems
- Title(参考訳): 解決策のマッチング: 機械学習問題を解決するための説明可能な方法
- Authors: Lokman Saleh, Hafedh Mili, Mounir Boukadoum,
- Abstract要約: あらゆる分野のドメインエキスパートは、データサイエンティストと協力して、問題を解決するためのML技術の使用を探求するよう求められます。
本稿では,1)ドメイン問題,ML問題,および主要MLソリューション成果物の表現,2)ドメイン問題に最も適したMLアルゴリズムファミリの識別を支援するマッチング機能について述べる。
- 参考スコア(独自算出の注目度): 1.7368964547487398
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Domain experts from all fields are called upon, working with data scientists, to explore the use of ML techniques to solve their problems. Starting from a domain problem/question, ML-based problem-solving typically involves three steps: (1) formulating the business problem (problem domain) as a data analysis problem (solution domain), (2) sketching a high-level ML-based solution pattern, given the domain requirements and the properties of the available data, and (3) designing and refining the different components of the solution pattern. There has to be a substantial body of ML problem solving knowledge that ML researchers agree on, and that ML practitioners routinely apply to solve the most common problems. Our work deals with capturing this body of knowledge, and embodying it in a ML problem solving workbench to helps domain specialists who are not ML experts to explore the ML solution space. This paper focuses on: 1) the representation of domain problems, ML problems, and the main ML solution artefacts, and 2) a heuristic matching function that helps identify the ML algorithm family that is most appropriate for the domain problem at hand, given the domain (expert) requirements, and the characteristics of the training data. We review related work and outline our strategy for validating the workbench
- Abstract(参考訳): あらゆる分野のドメインエキスパートは、データサイエンティストと協力して、問題を解決するためのML技術の使用を探求するよう求められます。
ドメインの問題/問合せから始まるMLベースの問題解決は、一般的には、(1)データ分析問題(ソリューションドメイン)としてビジネス問題(プロブレムドメイン)を定式化すること、(2)高レベルのMLベースのソリューションパターンをスケッチすること、(2)ドメイン要件と利用可能なデータの特性を与えられたこと、(3)ソリューションパターンの異なるコンポーネントを設計および精査すること、の3つのステップを含む。
ML研究者が同意する知識と、ML実践者が日常的に最も一般的な問題を解決するために適用している知識には、かなりの量のML問題解決知識がある必要がある。
私たちの研究は、この知識を捉え、それをML問題解決ワークベンチに具体化し、MLの専門家でないドメインスペシャリストがMLソリューションスペースを探索するのに役立つようにします。
本論は以下の点に焦点をあてる。
1)ドメイン問題,ML問題,及び主要MLソリューション成果物の表現
2)ドメイン(専門)要件とトレーニングデータの特徴を考慮し,その領域問題に最も適したMLアルゴリズムファミリの同定を支援するヒューリスティックマッチング関数。
関連作業の見直しとワークベンチの検証戦略の概要
関連論文リスト
- MathOdyssey: Benchmarking Mathematical Problem-Solving Skills in Large Language Models Using Odyssey Math Data [20.31528845718877]
大規模言語モデル(LLM)は、非常に高度な自然言語理解を持ち、強力な問題解決能力を示した。
本稿では,新たに開発された"MathOdyssey"データセットを用いて,LLMの数学的問題解決能力について検討する。
論文 参考訳(メタデータ) (2024-06-26T13:02:35Z) - Eliciting Problem Specifications via Large Language Models [4.055489363682198]
大型言語モデル(LLM)は、問題クラスを半形式仕様にマッピングするために利用することができる。
認知システムは、問題空間仕様を使用して、問題クラスからの問題の複数のインスタンスを解決することができる。
論文 参考訳(メタデータ) (2024-05-20T16:19:02Z) - Divide-or-Conquer? Which Part Should You Distill Your LLM? [40.563633582127316]
我々は、推論タスクを問題解決フェーズと問題解決フェーズに分解する同様の戦略を考案する。
戦略が単一ステージソリューションより優れていることを示す。
論文 参考訳(メタデータ) (2024-02-22T22:28:46Z) - Do Language Models Exhibit the Same Cognitive Biases in Problem Solving as Human Learners? [140.9751389452011]
本研究では,大言語モデル(LLM)の偏りを,算術語問題を解く際に,子どもに知られているものと関連づけて検討する。
我々は,これらの各テストに対して,問題特徴のきめ細かい制御を可能にするニューロシンボリックアプローチを用いて,新しい単語問題を生成する。
論文 参考訳(メタデータ) (2024-01-31T18:48:20Z) - G-LLaVA: Solving Geometric Problem with Multi-Modal Large Language Model [124.68242155098189]
大規模言語モデル(LLM)は、人間レベルの推論と生成能力に顕著な習熟性を示している。
G-LLaVAは幾何学的問題の解法において例外的な性能を示し、7Bパラメータしか持たないMathVistaベンチマークにおいて GPT-4-V を著しく上回っている。
論文 参考訳(メタデータ) (2023-12-18T17:36:20Z) - MacGyver: Are Large Language Models Creative Problem Solvers? [87.70522322728581]
本稿では, 現代LLMの創造的問題解決能力について, 制約付き環境下で検討する。
我々は1,600以上の実世界の問題からなる自動生成データセットであるMACGYVERを作成する。
我々はLLMと人間の両方にコレクションを提示し、それらの問題解決能力を比較して比較する。
論文 参考訳(メタデータ) (2023-11-16T08:52:27Z) - Thought Propagation: An Analogical Approach to Complex Reasoning with Large Language Models [62.96551299003463]
大規模言語モデルの複雑な推論能力を高めるために,textbftextitThought Propagation (TP)を提案する。
TP はまず LLM に対して,入力問題に関連する類似問題の集合を提案し,解決するよう促す。
TPは、類似問題の結果を再利用して、新しいソリューションを直接生成したり、スクラッチから得られた初期ソリューションを修正するための知識集約的な実行プランを導出する。
論文 参考訳(メタデータ) (2023-10-06T01:40:09Z) - MLPro: A System for Hosting Crowdsourced Machine Learning Challenges for
Open-Ended Research Problems [1.3254304182988286]
我々は,オープンエンドMLコーディング問題の概念とオンラインコードの自動判定プラットフォームの概念を組み合わせるシステムを開発した。
十分に制約のない複雑な問題に対して、多くの専門家が同様の解決策を提出するが、一部の専門家は「典型的な」解クラスよりも優れた独自のソリューションを提供している。
論文 参考訳(メタデータ) (2022-04-04T02:56:12Z) - A Mutual Information Maximization Approach for the Spurious Solution
Problem in Weakly Supervised Question Answering [60.768146126094955]
弱々しい教師付き質問応答は通常、最終的な答えのみを監督信号として持つ。
偶然に正解を導出する刺激的な解が多数存在するかもしれないが、そのような解の訓練はモデルの性能を損なう可能性がある。
本稿では,質問応答対と予測解間の相互情報の最大化により,このような意味的相関を明示的に活用することを提案する。
論文 参考訳(メタデータ) (2021-06-14T05:47:41Z) - Understanding the Usability Challenges of Machine Learning In
High-Stakes Decision Making [67.72855777115772]
機械学習(ML)は、多種多様な成長を続ける一連のドメインに適用されている。
多くの場合、MLやデータサイエンスの専門知識を持たないドメインの専門家は、ML予測を使用してハイステークな意思決定を行うように求められます。
児童福祉スクリーニングにおけるMLユーザビリティの課題について,児童福祉スクリーニング者との一連のコラボレーションを通じて検討する。
論文 参考訳(メタデータ) (2021-03-02T22:50:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。