Evaluating Large Vision-and-Language Models on Children's Mathematical Olympiads
- URL: http://arxiv.org/abs/2406.15736v1
- Date: Sat, 22 Jun 2024 05:04:39 GMT
- Title: Evaluating Large Vision-and-Language Models on Children's Mathematical Olympiads
- Authors: Anoop Cherian, Kuan-Chuan Peng, Suhas Lohit, Joanna Matthiesen, Kevin Smith, Joshua B. Tenenbaum,
- Abstract summary: A systematic analysis of AI capabilities for joint vision and text reasoning is missing in the current scientific literature.
We evaluate state-of-the-art LVLMs on their mathematical and algorithmic reasoning abilities using visuo-linguistic problems from children's Olympiads.
Our results show that modern LVLMs do demonstrate increasingly powerful reasoning skills in solving problems for higher grades, but lack the foundations to correctly answer problems designed for younger children.
- Score: 74.54183505245553
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Recent years have seen a significant progress in the general-purpose problem solving abilities of large vision and language models (LVLMs), such as ChatGPT, Gemini, etc.; some of these breakthroughs even seem to enable AI models to outperform human abilities in varied tasks that demand higher-order cognitive skills. Are the current large AI models indeed capable of generalized problem solving as humans do? A systematic analysis of AI capabilities for joint vision and text reasoning, however, is missing in the current scientific literature. In this paper, we make an effort towards filling this gap, by evaluating state-of-the-art LVLMs on their mathematical and algorithmic reasoning abilities using visuo-linguistic problems from children's Olympiads. Specifically, we consider problems from the Mathematical Kangaroo (MK) Olympiad, which is a popular international competition targeted at children from grades 1-12, that tests children's deeper mathematical abilities using puzzles that are appropriately gauged to their age and skills. Using the puzzles from MK, we created a dataset, dubbed SMART-840, consisting of 840 problems from years 2020-2024. With our dataset, we analyze LVLMs power on mathematical reasoning; their responses on our puzzles offer a direct way to compare against that of children. Our results show that modern LVLMs do demonstrate increasingly powerful reasoning skills in solving problems for higher grades, but lack the foundations to correctly answer problems designed for younger children. Further analysis shows that there is no significant correlation between the reasoning capabilities of AI models and that of young children, and their capabilities appear to be based on a different type of reasoning than the cumulative knowledge that underlies children's mathematics and logic skills.
Related papers
- Assessing the Creativity of LLMs in Proposing Novel Solutions to Mathematical Problems [9.162206328913237]
This study explores the creative potential of Large Language Models (LLMs) in mathematical reasoning.
We introduce a novel framework and benchmark, CreativeMath, which encompasses problems ranging from middle school curricula to Olympic-level competitions.
Our experiments demonstrate that, while LLMs perform well on standard mathematical tasks, their capacity for creative problem-solving varies considerably.
arXiv Detail & Related papers (2024-10-24T00:12:49Z) - MathOdyssey: Benchmarking Mathematical Problem-Solving Skills in Large Language Models Using Odyssey Math Data [20.31528845718877]
Large language models (LLMs) have significantly advanced natural language understanding and demonstrated strong problem-solving abilities.
This paper investigates the mathematical problem-solving capabilities of LLMs using the newly developed "MathOdyssey" dataset.
arXiv Detail & Related papers (2024-06-26T13:02:35Z) - OlympicArena: Benchmarking Multi-discipline Cognitive Reasoning for Superintelligent AI [73.75520820608232]
We introduce OlympicArena, which includes 11,163 bilingual problems across both text-only and interleaved text-image modalities.
These challenges encompass a wide range of disciplines spanning seven fields and 62 international Olympic competitions, rigorously examined for data leakage.
Our evaluations reveal that even advanced models like GPT-4o only achieve a 39.97% overall accuracy, illustrating current AI limitations in complex reasoning and multimodal integration.
arXiv Detail & Related papers (2024-06-18T16:20:53Z) - BDIQA: A New Dataset for Video Question Answering to Explore Cognitive
Reasoning through Theory of Mind [21.806678376095576]
Theory of mind (ToM) can make AI more closely resemble human thought processes.
Video question answer (VideoQA) datasets focus on studying causal reasoning within events few of them genuinely incorporating human ToM.
This paper presents BDIQA, the first benchmark to explore the cognitive reasoning capabilities of VideoQA models in the context of ToM.
arXiv Detail & Related papers (2024-02-12T04:34:19Z) - Do Language Models Exhibit the Same Cognitive Biases in Problem Solving as Human Learners? [140.9751389452011]
We study the biases of large language models (LLMs) in relation to those known in children when solving arithmetic word problems.
We generate a novel set of word problems for each of these tests, using a neuro-symbolic approach that enables fine-grained control over the problem features.
arXiv Detail & Related papers (2024-01-31T18:48:20Z) - Adapting Large Language Models for Education: Foundational Capabilities, Potentials, and Challenges [60.62904929065257]
Large language models (LLMs) offer possibility for resolving this issue by comprehending individual requests.
This paper reviews the recently emerged LLM research related to educational capabilities, including mathematics, writing, programming, reasoning, and knowledge-based question answering.
arXiv Detail & Related papers (2023-12-27T14:37:32Z) - MacGyver: Are Large Language Models Creative Problem Solvers? [87.70522322728581]
We explore the creative problem-solving capabilities of modern LLMs in a novel constrained setting.
We create MACGYVER, an automatically generated dataset consisting of over 1,600 real-world problems.
We present our collection to both LLMs and humans to compare and contrast their problem-solving abilities.
arXiv Detail & Related papers (2023-11-16T08:52:27Z) - Are Deep Neural Networks SMARTer than Second Graders? [85.60342335636341]
We evaluate the abstraction, deduction, and generalization abilities of neural networks in solving visuo-linguistic puzzles designed for children in the 6--8 age group.
Our dataset consists of 101 unique puzzles; each puzzle comprises a picture question, and their solution needs a mix of several elementary skills, including arithmetic, algebra, and spatial reasoning.
Experiments reveal that while powerful deep models offer reasonable performances on puzzles in a supervised setting, they are not better than random accuracy when analyzed for generalization.
arXiv Detail & Related papers (2022-12-20T04:33:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.