Probabilistic Programming with Programmable Variational Inference
- URL: http://arxiv.org/abs/2406.15742v1
- Date: Sat, 22 Jun 2024 05:49:37 GMT
- Title: Probabilistic Programming with Programmable Variational Inference
- Authors: McCoy R. Becker, Alexander K. Lew, Xiaoyan Wang, Matin Ghavami, Mathieu Huot, Martin C. Rinard, Vikash K. Mansinghka,
- Abstract summary: We propose a more modular approach to supporting variational inference in PPLs, based on compositional program transformation.
Our design enables modular reasoning about many interacting concerns, including automatic differentiation, density, tracing, and the application of unbiased gradient estimation strategies.
We implement our approach in an extension to the Gen probabilistic programming system (genjax.vi), implemented in JAX, and evaluate on several deep generative modeling tasks.
- Score: 45.593974530502095
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Compared to the wide array of advanced Monte Carlo methods supported by modern probabilistic programming languages (PPLs), PPL support for variational inference (VI) is less developed: users are typically limited to a predefined selection of variational objectives and gradient estimators, which are implemented monolithically (and without formal correctness arguments) in PPL backends. In this paper, we propose a more modular approach to supporting variational inference in PPLs, based on compositional program transformation. In our approach, variational objectives are expressed as programs, that may employ first-class constructs for computing densities of and expected values under user-defined models and variational families. We then transform these programs systematically into unbiased gradient estimators for optimizing the objectives they define. Our design enables modular reasoning about many interacting concerns, including automatic differentiation, density accumulation, tracing, and the application of unbiased gradient estimation strategies. Additionally, relative to existing support for VI in PPLs, our design increases expressiveness along three axes: (1) it supports an open-ended set of user-defined variational objectives, rather than a fixed menu of options; (2) it supports a combinatorial space of gradient estimation strategies, many not automated by today's PPLs; and (3) it supports a broader class of models and variational families, because it supports constructs for approximate marginalization and normalization (previously introduced only for Monte Carlo inference). We implement our approach in an extension to the Gen probabilistic programming system (genjax.vi, implemented in JAX), and evaluate on several deep generative modeling tasks, showing minimal performance overhead vs. hand-coded implementations and performance competitive with well-established open-source PPLs.
Related papers
- Machine Learning Optimized Orthogonal Basis Piecewise Polynomial Approximation [0.9208007322096533]
Piecewise Polynomials (PPs) are utilized in several engineering disciplines, like trajectory planning, to approximate position profiles given in the form of a set of points.
arXiv Detail & Related papers (2024-03-13T14:34:34Z) - Higher-Order Generalization Bounds: Learning Deep Probabilistic Programs
via PAC-Bayes Objectives [0.0]
We offer a framework for representing PAC-Bayes generalization bounds as programs using DPP-based methods.
In particular, we show that DPP techniques may be leveraged to derive generalization bounds that draw on the compositionality of DPP representations.
In turn, the bounds we introduce offer principled training objectives for higher-order probabilistic programs.
arXiv Detail & Related papers (2022-03-30T01:14:56Z) - Generalizing Interactive Backpropagating Refinement for Dense Prediction [0.0]
We introduce a set of G-BRS layers that enable both global and localized refinement for a range of dense prediction tasks.
Our method can successfully generalize and significantly improve performance of existing pretrained state-of-the-art models with only a few clicks.
arXiv Detail & Related papers (2021-12-21T03:52:08Z) - Differentiable Spline Approximations [48.10988598845873]
Differentiable programming has significantly enhanced the scope of machine learning.
Standard differentiable programming methods (such as autodiff) typically require that the machine learning models be differentiable.
We show that leveraging this redesigned Jacobian in the form of a differentiable "layer" in predictive models leads to improved performance in diverse applications.
arXiv Detail & Related papers (2021-10-04T16:04:46Z) - Optimization-Inspired Learning with Architecture Augmentations and
Control Mechanisms for Low-Level Vision [74.9260745577362]
This paper proposes a unified optimization-inspired learning framework to aggregate Generative, Discriminative, and Corrective (GDC) principles.
We construct three propagative modules to effectively solve the optimization models with flexible combinations.
Experiments across varied low-level vision tasks validate the efficacy and adaptability of GDC.
arXiv Detail & Related papers (2020-12-10T03:24:53Z) - Probabilistic Circuits for Variational Inference in Discrete Graphical
Models [101.28528515775842]
Inference in discrete graphical models with variational methods is difficult.
Many sampling-based methods have been proposed for estimating Evidence Lower Bound (ELBO)
We propose a new approach that leverages the tractability of probabilistic circuit models, such as Sum Product Networks (SPN)
We show that selective-SPNs are suitable as an expressive variational distribution, and prove that when the log-density of the target model is aweighted the corresponding ELBO can be computed analytically.
arXiv Detail & Related papers (2020-10-22T05:04:38Z) - Efficient Learning of Generative Models via Finite-Difference Score
Matching [111.55998083406134]
We present a generic strategy to efficiently approximate any-order directional derivative with finite difference.
Our approximation only involves function evaluations, which can be executed in parallel, and no gradient computations.
arXiv Detail & Related papers (2020-07-07T10:05:01Z) - Scalable Control Variates for Monte Carlo Methods via Stochastic
Optimization [62.47170258504037]
This paper presents a framework that encompasses and generalizes existing approaches that use controls, kernels and neural networks.
Novel theoretical results are presented to provide insight into the variance reduction that can be achieved, and an empirical assessment, including applications to Bayesian inference, is provided in support.
arXiv Detail & Related papers (2020-06-12T22:03:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.