Optimization-Driven Adaptive Experimentation
- URL: http://arxiv.org/abs/2408.04570v2
- Date: Thu, 07 Nov 2024 22:15:01 GMT
- Title: Optimization-Driven Adaptive Experimentation
- Authors: Ethan Che, Daniel R. Jiang, Hongseok Namkoong, Jimmy Wang,
- Abstract summary: Real-world experiments involve batched & delayed feedback, non-stationarity, multiple objectives & constraints, and (often some) personalization.
Tailoring adaptive methods to address these challenges on a per-problem basis is infeasible, and static designs remain the de facto standard.
We present a mathematical programming formulation that can flexibly incorporate a wide range of objectives, constraints, and statistical procedures.
- Score: 7.948144726705323
- License:
- Abstract: Real-world experiments involve batched & delayed feedback, non-stationarity, multiple objectives & constraints, and (often some) personalization. Tailoring adaptive methods to address these challenges on a per-problem basis is infeasible, and static designs remain the de facto standard. Focusing on short-horizon ($\le 10$) adaptive experiments, we move away from bespoke algorithms and present a mathematical programming formulation that can flexibly incorporate a wide range of objectives, constraints, and statistical procedures. We formulating a dynamic program based on central limit approximations, which enables the use of scalable optimization methods based on auto-differentiation and GPU parallelization. To evaluate our framework, we implement a simple heuristic planning method ("solver") and benchmark it across hundreds of problem instances involving non-stationarity, personalization, and multiple objectives & constraints. Unlike bespoke methods (e.g., Thompson sampling variants), our mathematical programming framework provides consistent gains over static randomized control trials and exhibits robust performance across problem instances.
Related papers
- Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Then framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by joint predictive models.
arXiv Detail & Related papers (2024-09-07T19:52:14Z) - Globally-Optimal Greedy Experiment Selection for Active Sequential
Estimation [1.1530723302736279]
We study the problem of active sequential estimation, which involves adaptively selecting experiments for sequentially collected data.
The goal is to design experiment selection rules for more accurate model estimation.
We propose a class of greedy experiment selection methods and provide statistical analysis for the maximum likelihood.
arXiv Detail & Related papers (2024-02-13T17:09:29Z) - Adaptive Experimentation at Scale: A Computational Framework for
Flexible Batches [7.390918770007728]
Motivated by practical instances involving a handful of reallocations in which outcomes are measured in batches, we develop an adaptive-driven experimentation framework.
Our main observation is that normal approximations, which are universal in statistical inference, can also guide the design of adaptive algorithms.
arXiv Detail & Related papers (2023-03-21T04:17:03Z) - Multi-Objective Policy Gradients with Topological Constraints [108.10241442630289]
We present a new algorithm for a policy gradient in TMDPs by a simple extension of the proximal policy optimization (PPO) algorithm.
We demonstrate this on a real-world multiple-objective navigation problem with an arbitrary ordering of objectives both in simulation and on a real robot.
arXiv Detail & Related papers (2022-09-15T07:22:58Z) - An Adaptive Incremental Gradient Method With Support for Non-Euclidean
Norms [19.41328109094503]
We propose and analyze several novel adaptive variants of the popular SAGA algorithm.
We establish its convergence guarantees under general settings.
We improve the analysis of SAGA to support non-Euclidean norms.
arXiv Detail & Related papers (2022-04-28T09:43:07Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
We present an end-to-end method to learn the proximal operator across non-family problems.
We show that for weakly-ized objectives and under mild conditions, the method converges globally.
arXiv Detail & Related papers (2022-01-28T05:53:28Z) - Constrained multi-objective optimization of process design parameters in
settings with scarce data: an application to adhesive bonding [48.7576911714538]
Finding the optimal process parameters for an adhesive bonding process is challenging.
Traditional evolutionary approaches (such as genetic algorithms) are then ill-suited to solve the problem.
In this research, we successfully applied specific machine learning techniques to emulate the objective and constraint functions.
arXiv Detail & Related papers (2021-12-16T10:14:39Z) - A Surrogate Objective Framework for Prediction+Optimization with Soft
Constraints [29.962390392493507]
Decision-focused prediction approaches, such as SPO+ and direct optimization, have been proposed to fill this gap.
This paper proposes a novel analytically differentiable surrogate objective framework for real-world linear and semi-definite negative quadratic programming problems.
arXiv Detail & Related papers (2021-11-22T17:09:57Z) - On Constraints in First-Order Optimization: A View from Non-Smooth
Dynamical Systems [99.59934203759754]
We introduce a class of first-order methods for smooth constrained optimization.
Two distinctive features of our approach are that projections or optimizations over the entire feasible set are avoided.
The resulting algorithmic procedure is simple to implement even when constraints are nonlinear.
arXiv Detail & Related papers (2021-07-17T11:45:13Z) - SUPER-ADAM: Faster and Universal Framework of Adaptive Gradients [99.13839450032408]
It is desired to design a universal framework for adaptive algorithms to solve general problems.
In particular, our novel framework provides adaptive methods under non convergence support for setting.
arXiv Detail & Related papers (2021-06-15T15:16:28Z) - Multiple Plans are Better than One: Diverse Stochastic Planning [26.887796946596243]
In planning problems, it is often challenging to fully model the desired specifications.
In particular, in human-robot interaction, such difficulty may arise due to human's preferences that are either private or complex to model.
We formulate a problem, called diverse planning, that aims to generate a set of representative behaviors that are near-optimal.
arXiv Detail & Related papers (2020-12-31T07:29:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.