論文の概要: ObjectNLQ @ Ego4D Episodic Memory Challenge 2024
- arxiv url: http://arxiv.org/abs/2406.15778v2
- Date: Mon, 18 Nov 2024 03:02:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:30:51.772105
- Title: ObjectNLQ @ Ego4D Episodic Memory Challenge 2024
- Title(参考訳): ObjectNLQ @ Ego4D Episodic Memory Challenge 2024
- Authors: Yisen Feng, Haoyu Zhang, Yuquan Xie, Zaijing Li, Meng Liu, Liqiang Nie,
- Abstract要約: 本稿では,CVPR 2024におけるEgo4D Episodic Memory Benchmarkの自然言語クエリトラックとゴールステップトラックについて紹介する。
どちらの課題も、テキストクエリを使って長いビデオシーケンス内のアクションをローカライズする必要がある。
我々は、オブジェクトブランチを組み込んだ新しいアプローチObjectNLQを導入し、ビデオ表現を詳細なオブジェクト情報で拡張する。
- 参考スコア(独自算出の注目度): 51.57555556405898
- License:
- Abstract: In this report, we present our approach for the Natural Language Query track and Goal Step track of the Ego4D Episodic Memory Benchmark at CVPR 2024. Both challenges require the localization of actions within long video sequences using textual queries. To enhance localization accuracy, our method not only processes the temporal information of videos but also identifies fine-grained objects spatially within the frames. To this end, we introduce a novel approach, termed ObjectNLQ, which incorporates an object branch to augment the video representation with detailed object information, thereby improving grounding efficiency. ObjectNLQ achieves a mean R@1 of 23.15, ranking 2nd in the Natural Language Queries Challenge, and gains 33.00 in terms of the metric R@1, IoU=0.3, ranking 3rd in the Goal Step Challenge. Our code will be released at https://github.com/Yisen-Feng/ObjectNLQ.
- Abstract(参考訳): 本稿では,CVPR 2024におけるEgo4D Episodic Memory Benchmarkの自然言語クエリトラックとゴールステップトラックについて述べる。
どちらの課題も、テキストクエリを使って長いビデオシーケンス内のアクションをローカライズする必要がある。
ローカライゼーションの精度を高めるため,ビデオの時間的情報を処理するだけでなく,フレーム内の微細な物体を空間的に識別する。
この目的のために,オブジェクトブランチを組み込んだ新しいアプローチであるObjectNLQを導入し,映像表現を詳細なオブジェクト情報で拡張し,グラウンド化効率を向上する。
ObjectNLQは23.15の平均R@1を達成し、自然言語クエリチャレンジでは2位、R@1, IoU=0.3で33.00を獲得し、ゴールステップチャレンジでは3位となった。
私たちのコードはhttps://github.com/Yisen-Feng/ObjectNLQ.comでリリースされます。
関連論文リスト
- 3D-Aware Instance Segmentation and Tracking in Egocentric Videos [107.10661490652822]
エゴセントリックなビデオは、3Dシーンの理解にユニークな課題を提示する。
本稿では,一対一のビデオにおけるインスタンスのセグメンテーションとトラッキングに対する新しいアプローチを提案する。
空間的および時間的手がかりを取り入れることで、最先端の2D手法と比較して優れた性能が得られる。
論文 参考訳(メタデータ) (2024-08-19T10:08:25Z) - Point-VOS: Pointing Up Video Object Segmentation [16.359861197595986]
現在の最先端のビデオオブジェクト(VOS)メソッドは、トレーニングとテストの両方において、オブジェクトごとの密集したマスクアノテーションに依存している。
本稿では,その労力を大幅に削減する疎時間的ポイントワイドアノテーションスキームを備えた新しいPoint-VOSタスクを提案する。
ビデオナラティブグラウンドディング(VNG)タスクで評価することで、視覚と言語を接続するモデルを改善するために、我々のデータが利用できることを示す。
論文 参考訳(メタデータ) (2024-02-08T18:52:23Z) - Fully Transformer-Equipped Architecture for End-to-End Referring Video
Object Segmentation [24.814534011440877]
本稿では,RVOSタスクをマスクシーケンス学習問題として扱うエンドツーエンドのRVOSフレームワークを提案する。
オブジェクトレベルの空間コンテキストをキャプチャするために,Stacked Transformerを開発した。
このモデルは、マスクシーケンスとテキストクエリの最適なマッチングを見つける。
論文 参考訳(メタデータ) (2023-09-21T09:47:47Z) - PointOdyssey: A Large-Scale Synthetic Dataset for Long-Term Point
Tracking [90.29143475328506]
本稿では,大規模合成データセットとデータ生成フレームワークであるPointOdysseyを紹介する。
私たちのゴールは、自然主義的な動きを持つ長いビデオに重点を置いて、最先端の技術を推し進めることです。
実世界のモーションキャプチャーデータを用いて変形可能なキャラクタをアニメーション化し、モーションキャプチャー環境に合わせて3Dシーンを構築し、リアルビデオ上で構造から抽出したトラジェクトリを用いてカメラ視点を描画する。
論文 参考訳(メタデータ) (2023-07-27T17:58:11Z) - Where is my Wallet? Modeling Object Proposal Sets for Egocentric Visual
Query Localization [119.23191388798921]
本稿では、視覚的見本から画像とビデオのデータセットにオブジェクトをローカライズする問題を扱う。
まず、現在のクエリ条件付きモデル設計とビジュアルクエリデータセットにおける暗黙バイアスを識別する。
本稿では,オブジェクト・プロモーサル・セット・コンテキストを考慮可能なトランスフォーマー・ベース・モジュールを提案する。
論文 参考訳(メタデータ) (2022-11-18T22:50:50Z) - The Second Place Solution for The 4th Large-scale Video Object
Segmentation Challenge--Track 3: Referring Video Object Segmentation [18.630453674396534]
ReferFormerは、すべてのビデオフレームで言語表現によって参照される所定のビデオでオブジェクトインスタンスをセグメントすることを目的としている。
本研究は, 循環学習率, 半教師付きアプローチ, テスト時間拡張推論など, さらなる向上策を提案する。
改良されたReferFormerはCVPR2022 Referring Youtube-VOS Challengeで2位にランクインした。
論文 参考訳(メタデータ) (2022-06-24T02:15:06Z) - Local-Global Context Aware Transformer for Language-Guided Video
Segmentation [103.35509224722097]
言語誘導ビデオセグメンテーション(LVS)の課題について検討する。
そこで我々は,Transformerアーキテクチャを有限メモリで拡張し,動画全体を言語表現で効率的にクエリするLocaterを提案する。
LVSモデルの視覚的接地能力を徹底的に検討するため、新しいLVSデータセットであるA2D-S+をA2D-Sデータセット上に構築する。
論文 参考訳(メタデータ) (2022-03-18T07:35:26Z) - O2NA: An Object-Oriented Non-Autoregressive Approach for Controllable
Video Captioning [41.14313691818424]
ビデオキャプションのためのオブジェクト指向非自己回帰手法(O2NA)を提案する。
O2NAは、1)フォーカス対象を特定し、ターゲットキャプション内の位置を予測すること、2)フォーカス対象の関連属性語と関係語を生成してドラフトキャプションを形成すること、3)ビデオ情報を組み合わせて、ドラフトキャプションを洗練された最終キャプションに変換すること、の3つのステップでキャプション生成を行う。
MSR-VTTとMSVDという2つのベンチマークデータセットの実験は、O2NAの有効性を実証している。
論文 参考訳(メタデータ) (2021-08-05T04:17:20Z) - DORi: Discovering Object Relationship for Moment Localization of a
Natural-Language Query in Video [98.54696229182335]
本研究では,自然言語クエリを用いて,時間的モーメントローカライゼーションの課題について検討する。
私たちの重要なイノベーションは、言語で条件付きメッセージパッシングアルゴリズムを通じて、ビデオ機能の埋め込みを学ぶことです。
時間的なサブグラフは、時間を通してビデオ内のアクティビティをキャプチャする。
論文 参考訳(メタデータ) (2020-10-13T09:50:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。