PointDreamer: Zero-shot 3D Textured Mesh Reconstruction from Colored Point Cloud
- URL: http://arxiv.org/abs/2406.15811v2
- Date: Wed, 08 Jan 2025 15:32:35 GMT
- Title: PointDreamer: Zero-shot 3D Textured Mesh Reconstruction from Colored Point Cloud
- Authors: Qiao Yu, Xianzhi Li, Yuan Tang, Xu Han, Jinfeng Xu, Long Hu, Min Chen,
- Abstract summary: Reconstructing textured meshes from colored point clouds is an important but challenging task.
We propose PointDreamer, a novel framework for textured mesh reconstruction from colored point cloud via diffusion-based 2D inpainting.
Thanks to the powerful 2D diffusion model pre-trained on extensive 2D data, PointDreamer reconstructs clear, high-quality textures with high robustness to sparse or noisy input.
- Score: 21.224318910715777
- License:
- Abstract: Reconstructing textured meshes from colored point clouds is an important but challenging task. Most existing methods yield blurry-looking textures or rely on 3D training data that are hard to acquire. Regarding this, we propose PointDreamer, a novel framework for textured mesh reconstruction from colored point cloud via diffusion-based 2D inpainting. Specifically, we first reconstruct an untextured mesh. Next, we project the input point cloud into 2D space to generate sparse multi-view images, and then inpaint empty pixels utilizing a pre-trained 2D diffusion model. After that, we unproject the colors of the inpainted dense images onto the untextured mesh, thus obtaining the final textured mesh. This project-inpaint-unproject pipeline bridges the gap between 3D point clouds and 2D diffusion models for the first time. Thanks to the powerful 2D diffusion model pre-trained on extensive 2D data, PointDreamer reconstructs clear, high-quality textures with high robustness to sparse or noisy input. Also, it's zero-shot requiring no extra training. In addition, we design Non-Border-First unprojection strategy to address the border-area inconsistency issue, which is less explored but commonly-occurred in methods that generate 3D textures from multiview images. Extensive qualitative and quantitative experiments on various synthetic and real-scanned datasets show the SoTA performance of PointDreamer, by significantly outperforming baseline methods with 30% improvement in LPIPS score (from 0.118 to 0.068). Code at: https://github.com/YuQiao0303/PointDreamer.
Related papers
- TEXGen: a Generative Diffusion Model for Mesh Textures [63.43159148394021]
We focus on the fundamental problem of learning in the UV texture space itself.
We propose a scalable network architecture that interleaves convolutions on UV maps with attention layers on point clouds.
We train a 700 million parameter diffusion model that can generate UV texture maps guided by text prompts and single-view images.
arXiv Detail & Related papers (2024-11-22T05:22:11Z) - DreamMesh: Jointly Manipulating and Texturing Triangle Meshes for Text-to-3D Generation [149.77077125310805]
We present DreamMesh, a novel text-to-3D architecture that pivots on well-defined surfaces (triangle meshes) to generate high-fidelity explicit 3D model.
In the coarse stage, the mesh is first deformed by text-guided Jacobians and then DreamMesh textures the mesh with an interlaced use of 2D diffusion models.
In the fine stage, DreamMesh jointly manipulates the mesh and refines the texture map, leading to high-quality triangle meshes with high-fidelity textured materials.
arXiv Detail & Related papers (2024-09-11T17:59:02Z) - GaussianPU: A Hybrid 2D-3D Upsampling Framework for Enhancing Color Point Clouds via 3D Gaussian Splatting [11.60605616190011]
We propose a novel 2D-3D hybrid colored point cloud upsampling framework (GaussianPU) based on 3D Gaussian Splatting (3DGS) for robotic perception.
A dual scale rendered image restoration network transforms sparse point cloud renderings into dense representations.
We have made a series of enhancements to the vanilla 3DGS, enabling precise control over the number of points.
arXiv Detail & Related papers (2024-09-03T03:35:04Z) - LAM3D: Large Image-Point-Cloud Alignment Model for 3D Reconstruction from Single Image [64.94932577552458]
Large Reconstruction Models have made significant strides in the realm of automated 3D content generation from single or multiple input images.
Despite their success, these models often produce 3D meshes with geometric inaccuracies, stemming from the inherent challenges of deducing 3D shapes solely from image data.
We introduce a novel framework, the Large Image and Point Cloud Alignment Model (LAM3D), which utilizes 3D point cloud data to enhance the fidelity of generated 3D meshes.
arXiv Detail & Related papers (2024-05-24T15:09:12Z) - Consistent Mesh Diffusion [8.318075237885857]
Given a 3D mesh with a UV parameterization, we introduce a novel approach to generating textures from text prompts.
We demonstrate our approach on a dataset containing 30 meshes, taking approximately 5 minutes per mesh.
arXiv Detail & Related papers (2023-12-01T23:25:14Z) - Point2Pix: Photo-Realistic Point Cloud Rendering via Neural Radiance
Fields [63.21420081888606]
Recent Radiance Fields and extensions are proposed to synthesize realistic images from 2D input.
We present Point2Pix as a novel point to link the 3D sparse point clouds with 2D dense image pixels.
arXiv Detail & Related papers (2023-03-29T06:26:55Z) - Deep Hybrid Self-Prior for Full 3D Mesh Generation [57.78562932397173]
We propose to exploit a novel hybrid 2D-3D self-prior in deep neural networks to significantly improve the geometry quality.
In particular, we first generate an initial mesh using a 3D convolutional neural network with 3D self-prior, and then encode both 3D information and color information in the 2D UV atlas.
Our method recovers the 3D textured mesh model of high quality from sparse input, and outperforms the state-of-the-art methods in terms of both the geometry and texture quality.
arXiv Detail & Related papers (2021-08-18T07:44:21Z) - SE-MD: A Single-encoder multiple-decoder deep network for point cloud
generation from 2D images [2.4087148947930634]
3D model generation from single 2D RGB images is a challenging and actively researched computer vision task.
There are various issues like using inefficient 3D representation formats, weak 3D model generation backbones, inability to generate dense point clouds.
A novel 2D RGB image to point cloud conversion technique is proposed, which improves the state of art in the field.
arXiv Detail & Related papers (2021-06-17T10:48:46Z) - ParaNet: Deep Regular Representation for 3D Point Clouds [62.81379889095186]
ParaNet is a novel end-to-end deep learning framework for representing 3D point clouds.
It converts an irregular 3D point cloud into a regular 2D color image, named point geometry image (PGI)
In contrast to conventional regular representation modalities based on multi-view projection and voxelization, the proposed representation is differentiable and reversible.
arXiv Detail & Related papers (2020-12-05T13:19:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.