Deep Hybrid Self-Prior for Full 3D Mesh Generation
- URL: http://arxiv.org/abs/2108.08017v1
- Date: Wed, 18 Aug 2021 07:44:21 GMT
- Title: Deep Hybrid Self-Prior for Full 3D Mesh Generation
- Authors: Xingkui Wei, Zhengqing Chen, Yanwei Fu, Zhaopeng Cui, Yinda Zhang
- Abstract summary: We propose to exploit a novel hybrid 2D-3D self-prior in deep neural networks to significantly improve the geometry quality.
In particular, we first generate an initial mesh using a 3D convolutional neural network with 3D self-prior, and then encode both 3D information and color information in the 2D UV atlas.
Our method recovers the 3D textured mesh model of high quality from sparse input, and outperforms the state-of-the-art methods in terms of both the geometry and texture quality.
- Score: 57.78562932397173
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a deep learning pipeline that leverages network self-prior to
recover a full 3D model consisting of both a triangular mesh and a texture map
from the colored 3D point cloud. Different from previous methods either
exploiting 2D self-prior for image editing or 3D self-prior for pure surface
reconstruction, we propose to exploit a novel hybrid 2D-3D self-prior in deep
neural networks to significantly improve the geometry quality and produce a
high-resolution texture map, which is typically missing from the output of
commodity-level 3D scanners. In particular, we first generate an initial mesh
using a 3D convolutional neural network with 3D self-prior, and then encode
both 3D information and color information in the 2D UV atlas, which is further
refined by 2D convolutional neural networks with the self-prior. In this way,
both 2D and 3D self-priors are utilized for the mesh and texture recovery.
Experiments show that, without the need of any additional training data, our
method recovers the 3D textured mesh model of high quality from sparse input,
and outperforms the state-of-the-art methods in terms of both the geometry and
texture quality.
Related papers
- ScalingGaussian: Enhancing 3D Content Creation with Generative Gaussian Splatting [30.99112626706754]
The creation of high-quality 3D assets is paramount for applications in digital heritage, entertainment, and robotics.
Traditionally, this process necessitates skilled professionals and specialized software for modeling.
We introduce a novel 3D content creation framework, which generates 3D textures efficiently.
arXiv Detail & Related papers (2024-07-26T18:26:01Z) - DIRECT-3D: Learning Direct Text-to-3D Generation on Massive Noisy 3D Data [50.164670363633704]
We present DIRECT-3D, a diffusion-based 3D generative model for creating high-quality 3D assets from text prompts.
Our model is directly trained on extensive noisy and unaligned in-the-wild' 3D assets.
We achieve state-of-the-art performance in both single-class generation and text-to-3D generation.
arXiv Detail & Related papers (2024-06-06T17:58:15Z) - Magic123: One Image to High-Quality 3D Object Generation Using Both 2D
and 3D Diffusion Priors [104.79392615848109]
We present Magic123, a two-stage coarse-to-fine approach for high-quality, textured 3D meshes from a single unposed image.
In the first stage, we optimize a neural radiance field to produce a coarse geometry.
In the second stage, we adopt a memory-efficient differentiable mesh representation to yield a high-resolution mesh with a visually appealing texture.
arXiv Detail & Related papers (2023-06-30T17:59:08Z) - Self-Supervised Geometry-Aware Encoder for Style-Based 3D GAN Inversion [115.82306502822412]
StyleGAN has achieved great progress in 2D face reconstruction and semantic editing via image inversion and latent editing.
A corresponding generic 3D GAN inversion framework is still missing, limiting the applications of 3D face reconstruction and semantic editing.
We study the challenging problem of 3D GAN inversion where a latent code is predicted given a single face image to faithfully recover its 3D shapes and detailed textures.
arXiv Detail & Related papers (2022-12-14T18:49:50Z) - Fine Detailed Texture Learning for 3D Meshes with Generative Models [33.42114674602613]
This paper presents a method to reconstruct high-quality textured 3D models from both multi-view and single-view images.
In the first stage, we focus on learning accurate geometry, whereas in the second stage, we focus on learning the texture with a generative adversarial network.
We demonstrate that our method achieves superior 3D textured models compared to the previous works.
arXiv Detail & Related papers (2022-03-17T14:50:52Z) - Fast-GANFIT: Generative Adversarial Network for High Fidelity 3D Face
Reconstruction [76.1612334630256]
We harness the power of Generative Adversarial Networks (GANs) and Deep Convolutional Neural Networks (DCNNs) to reconstruct the facial texture and shape from single images.
We demonstrate excellent results in photorealistic and identity preserving 3D face reconstructions and achieve for the first time, facial texture reconstruction with high-frequency details.
arXiv Detail & Related papers (2021-05-16T16:35:44Z) - 3D-to-2D Distillation for Indoor Scene Parsing [78.36781565047656]
We present a new approach that enables us to leverage 3D features extracted from large-scale 3D data repository to enhance 2D features extracted from RGB images.
First, we distill 3D knowledge from a pretrained 3D network to supervise a 2D network to learn simulated 3D features from 2D features during the training.
Second, we design a two-stage dimension normalization scheme to calibrate the 2D and 3D features for better integration.
Third, we design a semantic-aware adversarial training model to extend our framework for training with unpaired 3D data.
arXiv Detail & Related papers (2021-04-06T02:22:24Z) - An Effective Loss Function for Generating 3D Models from Single 2D Image
without Rendering [0.0]
Differentiable rendering is a very successful technique that applies to a Single-View 3D Reconstruction.
Currents use losses based on pixels between a rendered image of some 3D reconstructed object and ground-truth images from given matched viewpoints to optimise parameters of the 3D shape.
We propose a novel effective loss function that evaluates how well the projections of reconstructed 3D point clouds cover the ground truth object's silhouette.
arXiv Detail & Related papers (2021-03-05T00:02:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.