A frame-bundle formulation of quantum reference frames: from superposition of perspectives to superposition of geometries
- URL: http://arxiv.org/abs/2406.15838v2
- Date: Mon, 22 Jul 2024 15:21:38 GMT
- Title: A frame-bundle formulation of quantum reference frames: from superposition of perspectives to superposition of geometries
- Authors: Daniel A. Turolla Vanzella, Jeremy Butterfield,
- Abstract summary: We provide a possible fully geometric formulation of the core idea of quantum reference frames (QRFs)
A QRF encodes uncertainty about what is the observer's perception of time and space at each spacetime point.
A QRF can describe, in a local way, attributing the amplitudes to bases at events instead of to whole sections.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We provide a possible fully geometric formulation of the core idea of quantum reference frames (QRFs) as it has been applied in the context of gravity, freeing its definition from unnecessary (though convenient) ingredients, such as coordinate systems. Our formulation is based on two main ideas. First, a QRF encodes uncertainty about what is the observer's (and, hence, the measuring apparatus's) perception of time and space at each spacetime point (i.e., event). For this, an observer at an event $p$ is modeled, as usual, as a tetrad in the tangent space $T_p$. So a QRF at an event $p$ is a complex function on the tetrads at $p$. Second, we use the result that one can specify a metric on a given manifold by stipulating that a basis one assigns at each tangent space is to be a tetrad in the metric one wants to specify. Hence a spacetime, i.e. manifold plus metric, together with a choice of "point of view" on it, is represented by a section of the bundle of bases, understood as taking the basis assigned to each point to be a tetrad. Thus a superposition of spacetimes gets represented as, roughly speaking, an assignment of complex amplitudes to sections of this bundle. A QRF, defined here as the collection of complex amplitudes assigned to bases at events--i.e., a complex function defined on the bundle of bases of the manifold--can describe, in a local way (i.e., attributing the amplitudes to bases at events instead of to whole sections), these superpositions. We believe that this formulation sheds some light on some conceptual aspects and possible extensions of current ideas about QRFs. For instance, thinking in geometric terms makes it clear that the idea of QRFs applied to the gravitational scenarios treated in the literature (beyond linear approximation) lacks predictive power due to arbitrariness which, we argue, can only be resolved by some further input from physics.
Related papers
- Conformal geometry from entanglement [14.735587711294299]
We identify a quantum information-theoretic mechanism by which the conformal geometry emerges at the gapless edge of a 2+1D quantum many-body system.
We show that stationarity of $mathfrakc_mathrmtot$ is equivalent to a vector fixed-point equation involving $eta$, making our assumption locally checkable.
arXiv Detail & Related papers (2024-04-04T18:00:03Z) - Geometry of degenerate quantum states, configurations of $m$-planes and invariants on complex Grassmannians [55.2480439325792]
We show how to reduce the geometry of degenerate states to the non-abelian connection $A$.
We find independent invariants associated with each triple of subspaces.
Some of them generalize the Berry-Pancharatnam phase, and some do not have analogues for 1-dimensional subspaces.
arXiv Detail & Related papers (2024-04-04T06:39:28Z) - Identification is Pointless: Quantum Reference Frames, Localisation of
Events, and the Quantum Hole Argument [0.0]
Like a classical reference frame, a QRF can be used to define physical quantities such as time, position, momentum, and spin relationally.
We show that, in the presence of symmetries, whether a system is in 'the same' or 'different' configurations across the branches depends on the choice of QRF.
arXiv Detail & Related papers (2024-02-15T19:00:01Z) - Gaussian Entanglement Measure: Applications to Multipartite Entanglement
of Graph States and Bosonic Field Theory [50.24983453990065]
An entanglement measure based on the Fubini-Study metric has been recently introduced by Cocchiarella and co-workers.
We present the Gaussian Entanglement Measure (GEM), a generalization of geometric entanglement measure for multimode Gaussian states.
By providing a computable multipartite entanglement measure for systems with a large number of degrees of freedom, we show that our definition can be used to obtain insights into a free bosonic field theory.
arXiv Detail & Related papers (2024-01-31T15:50:50Z) - Fluctuations, uncertainty relations, and the geometry of quantum state
manifolds [0.0]
The complete quantum metric of a parametrized quantum system has a real part and a symplectic imaginary part.
We show that for a mixed quantum-classical system both real and imaginary parts of the quantum metric contribute to the dynamics.
arXiv Detail & Related papers (2023-09-07T10:31:59Z) - A coupling prescription for post-Newtonian corrections in Quantum Mechanics [0.0]
We develop a covariant framework for expressing post-Newtonian corrections to Schr"odinger's equation on arbitrary gravitational backgrounds.
We show that these results can be obtained from a $1/c2$ expansion of the complex Klein--Gordon Lagrangian.
The associated Schr"odinger equation captures novel and potentially measurable effects.
arXiv Detail & Related papers (2023-08-14T18:00:06Z) - Quantum Current and Holographic Categorical Symmetry [62.07387569558919]
A quantum current is defined as symmetric operators that can transport symmetry charges over an arbitrary long distance.
The condition for quantum currents to be superconducting is also specified, which corresponds to condensation of anyons in one higher dimension.
arXiv Detail & Related papers (2023-05-22T11:00:25Z) - Geometric post-Newtonian description of spin-half particles in curved
spacetime [0.0]
Einstein Equivalence Principle (EEP) requires all matter components to universally couple to gravity via a single common geometry.
I study the geometric theory of coupling a spin-1/2 particle to gravity in a twofold expansion scheme.
The formal expansion in powers of 1/c yields a systematic and complete generation of gravity corrections for quantum systems.
arXiv Detail & Related papers (2022-04-12T13:39:09Z) - Coordinate Independent Convolutional Networks -- Isometry and Gauge
Equivariant Convolutions on Riemannian Manifolds [70.32518963244466]
A major complication in comparison to flat spaces is that it is unclear in which alignment a convolution kernel should be applied on a manifold.
We argue that the particular choice of coordinatization should not affect a network's inference -- it should be coordinate independent.
A simultaneous demand for coordinate independence and weight sharing is shown to result in a requirement on the network to be equivariant.
arXiv Detail & Related papers (2021-06-10T19:54:19Z) - Quantum Relativity of Subsystems [58.720142291102135]
We show that different reference frame perspectives induce different sets of subsystem observable algebras, which leads to a gauge-invariant, frame-dependent notion of subsystems and entanglement.
Such a QRF perspective does not inherit the distinction between subsystems in terms of the corresponding tensor factorizability of the kinematical Hilbert space and observable algebra.
Since the condition for this to occur is contingent on the choice of QRF, the notion of subsystem locality is frame-dependent.
arXiv Detail & Related papers (2021-03-01T19:00:01Z) - The Geometry of Time in Topological Quantum Gravity of the Ricci Flow [62.997667081978825]
We continue the study of nonrelativistic quantum gravity associated with a family of Ricci flow equations.
This topological gravity is of the cohomological type, and it exhibits an $cal N=2$ extended BRST symmetry.
We demonstrate a standard one-step BRST gauge-fixing of a theory whose fields are $g_ij$, $ni$ and $n$, and whose gauge symmetries consist of (i) the topological deformations of $g_ij$, and (ii) the ultralocal nonrelativistic limit of space
arXiv Detail & Related papers (2020-11-12T06:57:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.