Quality-guided Skin Tone Enhancement for Portrait Photography
- URL: http://arxiv.org/abs/2406.15848v1
- Date: Sat, 22 Jun 2024 13:36:30 GMT
- Title: Quality-guided Skin Tone Enhancement for Portrait Photography
- Authors: Shiqi Gao, Huiyu Duan, Xinyue Li, Kang Fu, Yicong Peng, Qihang Xu, Yuanyuan Chang, Jia Wang, Xiongkuo Min, Guangtao Zhai,
- Abstract summary: We propose a quality-guided image enhancement paradigm that enables image enhancement models to learn the distribution of images with various quality ratings.
Our method can adjust the skin tone corresponding to different quality requirements.
- Score: 46.55401398142088
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, learning-based color and tone enhancement methods for photos have become increasingly popular. However, most learning-based image enhancement methods just learn a mapping from one distribution to another based on one dataset, lacking the ability to adjust images continuously and controllably. It is important to enable the learning-based enhancement models to adjust an image continuously, since in many cases we may want to get a slighter or stronger enhancement effect rather than one fixed adjusted result. In this paper, we propose a quality-guided image enhancement paradigm that enables image enhancement models to learn the distribution of images with various quality ratings. By learning this distribution, image enhancement models can associate image features with their corresponding perceptual qualities, which can be used to adjust images continuously according to different quality scores. To validate the effectiveness of our proposed method, a subjective quality assessment experiment is first conducted, focusing on skin tone adjustment in portrait photography. Guided by the subjective quality ratings obtained from this experiment, our method can adjust the skin tone corresponding to different quality requirements. Furthermore, an experiment conducted on 10 natural raw images corroborates the effectiveness of our model in situations with fewer subjects and fewer shots, and also demonstrates its general applicability to natural images. Our project page is https://github.com/IntMeGroup/quality-guided-enhancement .
Related papers
- JeDi: Joint-Image Diffusion Models for Finetuning-Free Personalized Text-to-Image Generation [49.997839600988875]
Existing personalization methods rely on finetuning a text-to-image foundation model on a user's custom dataset.
We propose Joint-Image Diffusion (jedi), an effective technique for learning a finetuning-free personalization model.
Our model achieves state-of-the-art generation quality, both quantitatively and qualitatively, significantly outperforming both the prior finetuning-based and finetuning-free personalization baselines.
arXiv Detail & Related papers (2024-07-08T17:59:02Z) - DiffRetouch: Using Diffusion to Retouch on the Shoulder of Experts [45.730449182899754]
diffusion-based retouching method named DiffRetouch.
Four image attributes are made adjustable to provide a user-friendly editing mechanism.
Affine bilateral grid and contrastive learning scheme are introduced to handle the problem of texture distortion and control insensitivity respectively.
arXiv Detail & Related papers (2024-07-04T09:09:42Z) - Local Manifold Learning for No-Reference Image Quality Assessment [68.9577503732292]
We propose an innovative framework that integrates local manifold learning with contrastive learning for No-Reference Image Quality Assessment (NR-IQA)
Our approach demonstrates a better performance compared to state-of-the-art methods in 7 standard datasets.
arXiv Detail & Related papers (2024-06-27T15:14:23Z) - HiCD: Change Detection in Quality-Varied Images via Hierarchical
Correlation Distillation [40.03785896317387]
We introduce an innovative training strategy grounded in knowledge distillation.
The core idea revolves around leveraging task knowledge acquired from high-quality image pairs to guide the model's learning.
We develop a hierarchical correlation distillation approach (involving self-correlation, cross-correlation, and global correlation)
arXiv Detail & Related papers (2024-01-19T15:21:51Z) - Test your samples jointly: Pseudo-reference for image quality evaluation [3.2634122554914]
We propose to jointly model different images depicting the same content to improve the precision of quality estimation.
Our experiments show that at test-time, our method successfully combines the features from multiple images depicting the same new content, improving estimation quality.
arXiv Detail & Related papers (2023-04-07T17:59:27Z) - Quality-aware Pre-trained Models for Blind Image Quality Assessment [15.566552014530938]
Blind image quality assessment (BIQA) aims to automatically evaluate the perceived quality of a single image.
In this paper, we propose to solve the problem by a pretext task customized for BIQA in a self-supervised learning manner.
arXiv Detail & Related papers (2023-03-01T13:52:40Z) - Controllable Image Enhancement [66.18525728881711]
We present a semiautomatic image enhancement algorithm that can generate high-quality images with multiple styles by controlling a few parameters.
An encoder-decoder framework encodes the retouching skills into latent codes and decodes them into the parameters of image signal processing functions.
arXiv Detail & Related papers (2022-06-16T23:54:53Z) - Conformer and Blind Noisy Students for Improved Image Quality Assessment [80.57006406834466]
Learning-based approaches for perceptual image quality assessment (IQA) usually require both the distorted and reference image for measuring the perceptual quality accurately.
In this work, we explore the performance of transformer-based full-reference IQA models.
We also propose a method for IQA based on semi-supervised knowledge distillation from full-reference teacher models into blind student models.
arXiv Detail & Related papers (2022-04-27T10:21:08Z) - Towards Unsupervised Deep Image Enhancement with Generative Adversarial
Network [92.01145655155374]
We present an unsupervised image enhancement generative network (UEGAN)
It learns the corresponding image-to-image mapping from a set of images with desired characteristics in an unsupervised manner.
Results show that the proposed model effectively improves the aesthetic quality of images.
arXiv Detail & Related papers (2020-12-30T03:22:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.