Local Manifold Learning for No-Reference Image Quality Assessment
- URL: http://arxiv.org/abs/2406.19247v1
- Date: Thu, 27 Jun 2024 15:14:23 GMT
- Title: Local Manifold Learning for No-Reference Image Quality Assessment
- Authors: Timin Gao, Wensheng Pan, Yan Zhang, Sicheng Zhao, Shengchuan Zhang, Xiawu Zheng, Ke Li, Liujuan Cao, Rongrong Ji,
- Abstract summary: We propose an innovative framework that integrates local manifold learning with contrastive learning for No-Reference Image Quality Assessment (NR-IQA)
Our approach demonstrates a better performance compared to state-of-the-art methods in 7 standard datasets.
- Score: 68.9577503732292
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Contrastive learning has considerably advanced the field of Image Quality Assessment (IQA), emerging as a widely adopted technique. The core mechanism of contrastive learning involves minimizing the distance between quality-similar (positive) examples while maximizing the distance between quality-dissimilar (negative) examples. Despite its successes, current contrastive learning methods often neglect the importance of preserving the local manifold structure. This oversight can result in a high degree of similarity among hard examples within the feature space, thereby impeding effective differentiation and assessment. To address this issue, we propose an innovative framework that integrates local manifold learning with contrastive learning for No-Reference Image Quality Assessment (NR-IQA). Our method begins by sampling multiple crops from a given image, identifying the most visually salient crop. This crop is then used to cluster other crops from the same image as the positive class, while crops from different images are treated as negative classes to increase inter-class distance. Uniquely, our approach also considers non-saliency crops from the same image as intra-class negative classes to preserve their distinctiveness. Additionally, we employ a mutual learning framework, which further enhances the model's ability to adaptively learn and identify visual saliency regions. Our approach demonstrates a better performance compared to state-of-the-art methods in 7 standard datasets, achieving PLCC values of 0.942 (compared to 0.908 in TID2013) and 0.914 (compared to 0.894 in LIVEC).
Related papers
- Classification of Breast Cancer Histopathology Images using a Modified Supervised Contrastive Learning Method [4.303291247305105]
We improve the supervised contrastive learning method by leveraging both image-level labels and domain-specific augmentations to enhance model robustness.
We evaluate our method on the BreakHis dataset, which consists of breast cancer histopathology images.
This improvement corresponds to 93.63% absolute accuracy, highlighting the effectiveness of our approach in leveraging properties of data to learn more appropriate representation space.
arXiv Detail & Related papers (2024-05-06T17:06:11Z) - LeOCLR: Leveraging Original Images for Contrastive Learning of Visual Representations [4.680881326162484]
Contrastive instance discrimination methods outperform supervised learning in downstream tasks such as image classification and object detection.
A common augmentation technique in contrastive learning is random cropping followed by resizing.
We introduce LeOCLR, a framework that employs a novel instance discrimination approach and an adapted loss function.
arXiv Detail & Related papers (2024-03-11T15:33:32Z) - Less is More: Learning Reference Knowledge Using No-Reference Image
Quality Assessment [58.09173822651016]
We argue that it is possible to learn reference knowledge under the No-Reference Image Quality Assessment setting.
We propose a new framework to learn comparative knowledge from non-aligned reference images.
Experiments on eight standard NR-IQA datasets demonstrate the superior performance to the state-of-the-art NR-IQA methods.
arXiv Detail & Related papers (2023-12-01T13:56:01Z) - Stain-invariant self supervised learning for histopathology image
analysis [74.98663573628743]
We present a self-supervised algorithm for several classification tasks within hematoxylin and eosin stained images of breast cancer.
Our method achieves the state-of-the-art performance on several publicly available breast cancer datasets.
arXiv Detail & Related papers (2022-11-14T18:16:36Z) - Mix-up Self-Supervised Learning for Contrast-agnostic Applications [33.807005669824136]
We present the first mix-up self-supervised learning framework for contrast-agnostic applications.
We address the low variance across images based on cross-domain mix-up and build the pretext task based on image reconstruction and transparency prediction.
arXiv Detail & Related papers (2022-04-02T16:58:36Z) - Magnification-independent Histopathological Image Classification with
Similarity-based Multi-scale Embeddings [12.398787062519034]
We propose an approach that learns similarity-based multi-scale embeddings for magnification-independent image classification.
In particular, a pair loss and a triplet loss are leveraged to learn similarity-based embeddings from image pairs or image triplets.
The SMSE achieves the best performance on the BreakHis benchmark with an improvement ranging from 5% to 18% compared to previous methods.
arXiv Detail & Related papers (2021-07-02T13:18:45Z) - With a Little Help from My Friends: Nearest-Neighbor Contrastive
Learning of Visual Representations [87.72779294717267]
Using the nearest-neighbor as positive in contrastive losses improves performance significantly on ImageNet classification.
We demonstrate empirically that our method is less reliant on complex data augmentations.
arXiv Detail & Related papers (2021-04-29T17:56:08Z) - Solving Inefficiency of Self-supervised Representation Learning [87.30876679780532]
Existing contrastive learning methods suffer from very low learning efficiency.
Under-clustering and over-clustering problems are major obstacles to learning efficiency.
We propose a novel self-supervised learning framework using a median triplet loss.
arXiv Detail & Related papers (2021-04-18T07:47:10Z) - Distilling Localization for Self-Supervised Representation Learning [82.79808902674282]
Contrastive learning has revolutionized unsupervised representation learning.
Current contrastive models are ineffective at localizing the foreground object.
We propose a data-driven approach for learning in variance to backgrounds.
arXiv Detail & Related papers (2020-04-14T16:29:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.