論文の概要: Next Level Message-Passing with Hierarchical Support Graphs
- arxiv url: http://arxiv.org/abs/2406.15852v1
- Date: Sat, 22 Jun 2024 13:57:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 20:15:22.613002
- Title: Next Level Message-Passing with Hierarchical Support Graphs
- Title(参考訳): 階層型サポートグラフによる次世代メッセージパッシング
- Authors: Carlos Vonessen, Florian Grötschla, Roger Wattenhofer,
- Abstract要約: 階層型サポートグラフ(Hierarchical Support Graph, HSG)は、特定のMPNN層に依存しない、グラフ内の情報フローを強化するフレームワークである。
本稿では, HSGの理論的解析を行い, その経験的性能について検討し, 仮想ノードで拡張した他の手法よりもHSGの方が優れていることを示す。
- 参考スコア(独自算出の注目度): 20.706469085872516
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Message-Passing Neural Networks (MPNNs) are extensively employed in graph learning tasks but suffer from limitations such as the restricted scope of information exchange, by being confined to neighboring nodes during each round of message passing. Various strategies have been proposed to address these limitations, including incorporating virtual nodes to facilitate global information exchange. In this study, we introduce the Hierarchical Support Graph (HSG), an extension of the virtual node concept created through recursive coarsening of the original graph. This approach provides a flexible framework for enhancing information flow in graphs, independent of the specific MPNN layers utilized. We present a theoretical analysis of HSGs, investigate their empirical performance, and demonstrate that HSGs can surpass other methods augmented with virtual nodes, achieving state-of-the-art results across multiple datasets.
- Abstract(参考訳): メッセージパッシングニューラルネットワーク(MPNN)は、グラフ学習タスクに広く使用されているが、各ラウンドのメッセージパッシング中に隣接するノードに制限されるため、情報交換の制限範囲のような制限に悩まされている。
グローバルな情報交換を容易にするために仮想ノードを組み込むなど、これらの制限に対処する様々な戦略が提案されている。
本研究では,元のグラフの再帰的粗大化によって生成された仮想ノードの概念の拡張である階層支援グラフ(HSG)を紹介する。
このアプローチは、使用する特定のMPNN層とは独立して、グラフ内の情報フローを強化する柔軟なフレームワークを提供する。
本稿では、HSGの理論的解析を行い、その経験的性能を検証し、HSGが仮想ノードで拡張された他の手法を超越し、複数のデータセットにまたがって最先端の結果を達成できることを実証する。
関連論文リスト
- Unveiling Global Interactive Patterns across Graphs: Towards Interpretable Graph Neural Networks [31.29616732552006]
グラフニューラルネットワーク(GNN)は、グラフマイニングの著名なフレームワークとして登場した。
本稿では,グラフ分類に内在的に解釈可能な新しい手法を提案する。
グローバル対話パターン(GIP)学習は、学習可能なグローバル対話パターンを導入し、決定を明示的に解釈する。
論文 参考訳(メタデータ) (2024-07-02T06:31:13Z) - Harnessing Collective Structure Knowledge in Data Augmentation for Graph Neural Networks [25.12261412297796]
グラフニューラルネットワーク(GNN)は,グラフ表現学習において最先端のパフォーマンスを達成した。
我々は新しいアプローチ、すなわち集合構造知識強化グラフニューラルネットワーク(CoS-GNN)を提案する。
論文 参考訳(メタデータ) (2024-05-17T08:50:00Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
グラフニューラルネットワーク(GNN)は、複雑な構造を持つグラフ上での表現学習の堅牢性を示す。
ノードのより包括的な埋め込み表現を得るために、Decoupled Graph Neural Networks (DGNN)と呼ばれる新しいGNNフレームワークが導入された。
複数のグラフベンチマークデータセットを用いて、ノード分類タスクにおけるDGNNの優位性を検証した。
論文 参考訳(メタデータ) (2024-01-28T06:43:13Z) - Learning How to Propagate Messages in Graph Neural Networks [55.2083896686782]
本稿では,グラフニューラルネットワーク(GNN)におけるメッセージ伝搬戦略の学習問題について検討する。
本稿では,GNNパラメータの最大類似度推定を支援するために,最適伝搬ステップを潜時変数として導入する。
提案フレームワークは,GNNにおけるメッセージのパーソナライズおよび解釈可能な伝達戦略を効果的に学習することができる。
論文 参考訳(メタデータ) (2023-10-01T15:09:59Z) - Gradient Gating for Deep Multi-Rate Learning on Graphs [62.25886489571097]
グラフニューラルネットワーク(GNN)の性能向上のための新しいフレームワークであるグラディエントゲーティング(G$2$)を提案する。
我々のフレームワークは,GNN層の出力を,基盤となるグラフのノード間でのメッセージパッシング情報のマルチレートフローのメカニズムでゲーティングすることに基づいている。
論文 参考訳(メタデータ) (2022-10-02T13:19:48Z) - DPGNN: Dual-Perception Graph Neural Network for Representation Learning [21.432960458513826]
グラフニューラルネットワーク(GNN)は近年注目を集め、グラフベースのタスクの多くで顕著なパフォーマンスを実現している。
既存のGNNの多くは、メッセージパッシングパラダイムに基づいて、1つのトポロジ空間内の近隣情報を反復的に集約している。
本稿では,マルチステップメッセージソースの特性,ノード固有のメッセージ出力,マルチスペースメッセージインタラクションに基づく新しいメッセージパッシングパラダイムを提案する。
論文 参考訳(メタデータ) (2021-10-15T05:47:26Z) - Graph Feature Gating Networks [31.20878472589719]
本稿では,グラフ信号の雑音化問題に基づく一般グラフ特徴ゲーティングネットワーク(gfgn)を提案する。
また、GFGNの下で3つのグラフフィルターを導入し、機能寸法から異なるレベルのコントリビューションを可能にします。
論文 参考訳(メタデータ) (2021-05-10T16:33:58Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
グラフ畳み込みネットワークにおける既存の表現学習手法は主に、各ノードの近傍を知覚全体として記述することで設計される。
本稿では,グラフの潜在意味パスを学習することで暗黙的な意味を探索する意味グラフ畳み込みネットワーク(sgcn)を提案する。
論文 参考訳(メタデータ) (2021-01-16T16:18:43Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
HSI分類のための自動グラフ学習法(MGCN-AGL)を用いたマルチレベルグラフ畳み込みネットワーク(GCN)を提案する。
空間的に隣接する領域における重要度を特徴付けるために注意機構を利用することで、最も関連性の高い情報を適応的に組み込んで意思決定を行うことができる。
MGCN-AGLは局所的に生成した表現表現に基づいて画像領域間の長距離依存性を符号化する。
論文 参考訳(メタデータ) (2020-09-19T09:26:20Z) - Hierarchical Message-Passing Graph Neural Networks [12.207978823927386]
本稿では,新しい階層型メッセージパッシンググラフニューラルネットワークフレームワークを提案する。
鍵となるアイデアは、フラットグラフ内のすべてのノードをマルチレベルなスーパーグラフに再編成する階層構造を生成することである。
階層型コミュニティ対応グラフニューラルネットワーク(HC-GNN)と呼ばれる,このフレームワークを実装した最初のモデルを提案する。
論文 参考訳(メタデータ) (2020-09-08T13:11:07Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
グラフニューラルネットワーク(GNN)は、局所的なグラフ構造をモデル化し、隣人からの情報を集約することで階層的なパターンを捉えることを目的としている。
複雑なグラフとスパースな特徴を与えられた各ノードに対して効果的なアグリゲーション戦略を開発することは難しい課題である。
本稿では,GNNのサンプリング手順とメッセージパッシングを複合学習プロセスにモデル化するメタ政治フレームワークであるPolicy-GNNを提案する。
論文 参考訳(メタデータ) (2020-06-26T17:03:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。