Injectivity of ReLU-layers: Perspectives from Frame Theory
- URL: http://arxiv.org/abs/2406.15856v3
- Date: Tue, 08 Oct 2024 16:26:01 GMT
- Title: Injectivity of ReLU-layers: Perspectives from Frame Theory
- Authors: Peter Balazs, Martin Ehler, Daniel Haider,
- Abstract summary: Injectivity is the defining property of a mapping that ensures no information is lost and any input can be reconstructed from its output.
This article establishes a frame theoretic perspective to approach this problem.
- Score: 0.0
- License:
- Abstract: Injectivity is the defining property of a mapping that ensures no information is lost and any input can be perfectly reconstructed from its output. By performing hard thresholding, the ReLU function naturally interferes with this property, making the injectivity analysis of ReLU-layers in neural networks a challenging yet intriguing task that has not yet been fully solved. This article establishes a frame theoretic perspective to approach this problem. The main objective is to develop the most general characterization of the injectivity behavior of ReLU-layers in terms of all three involved ingredients: (i) the weights, (ii) the bias, and (iii) the domain where the data is drawn from. Maintaining a focus on practical applications, we limit our attention to bounded domains and present two methods for numerically approximating a maximal bias for given weights and data domains. These methods provide sufficient conditions for the injectivity of a ReLU-layer on those domains and yield a novel practical methodology for studying the information loss in ReLU layers. Finally, we derive explicit reconstruction formulas based on the duality concept from frame theory.
Related papers
- On the Dynamics Under the Unhinged Loss and Beyond [104.49565602940699]
We introduce the unhinged loss, a concise loss function, that offers more mathematical opportunities to analyze closed-form dynamics.
The unhinged loss allows for considering more practical techniques, such as time-vary learning rates and feature normalization.
arXiv Detail & Related papers (2023-12-13T02:11:07Z) - Intrinsic Image Decomposition via Ordinal Shading [0.0]
Intrinsic decomposition is a fundamental mid-level vision problem that plays a crucial role in inverse rendering and computational photography pipelines.
We present a dense ordinal shading formulation using a shift- and scale-invariant loss to estimate ordinal shading cues.
We then combine low- and high-resolution ordinal estimations using a second network to generate a shading estimate with both global coherency and local details.
arXiv Detail & Related papers (2023-11-21T18:58:01Z) - Accelerated Neural Network Training with Rooted Logistic Objectives [13.400503928962756]
We derive a novel sequence of em strictly convex functions that are at least as strict as logistic loss.
Our results illustrate that training with rooted loss function is converged faster and gains performance improvements.
arXiv Detail & Related papers (2023-10-05T20:49:48Z) - Neural Poisson Surface Reconstruction: Resolution-Agnostic Shape
Reconstruction from Point Clouds [53.02191521770926]
We introduce Neural Poisson Surface Reconstruction (nPSR), an architecture for shape reconstruction that addresses the challenge of recovering 3D shapes from points.
nPSR exhibits two main advantages: First, it enables efficient training on low-resolution data while achieving comparable performance at high-resolution evaluation.
Overall, the neural Poisson surface reconstruction not only improves upon the limitations of classical deep neural networks in shape reconstruction but also achieves superior results in terms of reconstruction quality, running time, and resolution agnosticism.
arXiv Detail & Related papers (2023-08-03T13:56:07Z) - A Functional-Space Mean-Field Theory of Partially-Trained Three-Layer
Neural Networks [49.870593940818715]
We study the infinite-width limit of a type of three-layer NN model whose first layer is random and fixed.
Our theory accommodates different scaling choices of the model, resulting in two regimes of the MF limit that demonstrate distinctive behaviors.
arXiv Detail & Related papers (2022-10-28T17:26:27Z) - Critical Investigation of Failure Modes in Physics-informed Neural
Networks [0.9137554315375919]
We show that a physics-informed neural network with a composite formulation produces highly non- learned loss surfaces that are difficult to optimize.
We also assess the training both approaches on two elliptic problems with increasingly complex target solutions.
arXiv Detail & Related papers (2022-06-20T18:43:35Z) - Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks [83.58049517083138]
We consider a two-layer ReLU network trained via gradient descent.
We show that SGD is biased towards a simple solution.
We also provide empirical evidence that knots at locations distinct from the data points might occur.
arXiv Detail & Related papers (2021-11-03T15:14:20Z) - Existence, uniqueness, and convergence rates for gradient flows in the
training of artificial neural networks with ReLU activation [2.4087148947930634]
The training of artificial neural networks (ANNs) with rectified linear unit (ReLU) activation via gradient descent (GD) type optimization schemes is nowadays a common industrially relevant procedure.
Till this day in the scientific literature there is in general no mathematical convergence analysis which explains the numerical success of GD type schemes in the training of ANNs with ReLU activation.
arXiv Detail & Related papers (2021-08-18T12:06:19Z) - Phase Transitions, Distance Functions, and Implicit Neural
Representations [26.633795221150475]
Implicit Neural Representations (INRs) serve numerous downstream applications in geometric deep learning and 3D vision.
We suggest a loss for training INRs that learns a density function that converges to a proper occupancy function, while its log transform converges to a distance function.
arXiv Detail & Related papers (2021-06-14T18:13:45Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z) - Approximation Schemes for ReLU Regression [80.33702497406632]
We consider the fundamental problem of ReLU regression.
The goal is to output the best fitting ReLU with respect to square loss given to draws from some unknown distribution.
arXiv Detail & Related papers (2020-05-26T16:26:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.