論文の概要: Language Alignment via Nash-learning and Adaptive feedback
- arxiv url: http://arxiv.org/abs/2406.15890v1
- Date: Sat, 22 Jun 2024 16:55:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 20:03:15.656316
- Title: Language Alignment via Nash-learning and Adaptive feedback
- Title(参考訳): ナッシュラーニングと適応フィードバックによる言語アライメント
- Authors: Ari Azarafrooz, Farshid Faal,
- Abstract要約: 大規模言語モデルアライメントのためのヒューマンフィードバックによるナッシュラーニングの可能性を示す。
我々は、改良された相手の適応的フィードバックに対して、アライメントをミラー降下アルゴリズムとしてキャストすることで、この考え方をさらに推し進める。
得られたアルゴリズムは、人間に注釈付けされた嗜好データセットを必要とせずに、自己アライメントを行うことができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent research has shown the potential of Nash Learning via Human Feedback for large language model alignment by incorporating the notion of a preference model in a minimax game setup. We take this idea further by casting the alignment as a mirror descent algorithm against the adaptive feedback of an improved opponent, thereby removing the need for learning a preference model or the existence of an annotated dataset altogether. The resulting algorithm, which we refer to as Language Alignment via Nash-learning and Adaptive feedback (LANA), is capable of self-alignment without the need for a human-annotated preference dataset. We support this statement with various experiments and mathematical discussion.
- Abstract(参考訳): 近年の研究では、ミニマックスゲームの設定に嗜好モデルの概念を取り入れることで、大規模言語モデルアライメントのためのヒューマンフィードバックによるナッシュラーニングの可能性を示している。
さらに、改良された相手の適応的フィードバックに対して、アライメントをミラー降下アルゴリズムとしてキャストすることで、好みモデルや注釈付きデータセットの存在を完全に学習する必要がなくなる。
得られたアルゴリズムは、Nash-learning and Adaptive feedback (LANA)を介して言語アライメント(Language Alignment)と呼ばれ、人間に注釈付けされた嗜好データセットを必要とせずに自己アライメントを行うことができる。
我々は、様々な実験と数学的議論でこの主張を支持している。
関連論文リスト
- Improving the Validity of Automatically Generated Feedback via
Reinforcement Learning [50.067342343957876]
強化学習(RL)を用いた正当性と整合性の両方を最適化するフィードバック生成フレームワークを提案する。
具体的には、直接選好最適化(DPO)によるトレーニングのための拡張データセットにおいて、GPT-4のアノテーションを使用してフィードバックペアよりも好みを生成する。
論文 参考訳(メタデータ) (2024-03-02T20:25:50Z) - Linear Alignment: A Closed-form Solution for Aligning Human Preferences without Tuning and Feedback [70.32795295142648]
リニアアライメントは、言語モデルと人間の好みを1つの推論ステップで整列する新しいアルゴリズムである。
一般的な選好データセットとパーソナライズされた選好データセットの実験により、線形アライメントはLLMアライメントの性能と効率を大幅に向上させることが示された。
論文 参考訳(メタデータ) (2024-01-21T10:46:23Z) - ULMA: Unified Language Model Alignment with Human Demonstration and
Point-wise Preference [16.73260713938154]
典型的なアライメント手順は、教師付き微調整と選好学習からなる。
本稿では,ポイントワイズフィードバックを効果的に活用する新しい選好学習手法であるPoint-wise Direct Preference Optimizationを紹介する。
我々の研究は、教師付き微調整とポイントワイド選好学習の新たなつながりを明らかにし、統一言語モデルアライメント(英語版)に到達した。
論文 参考訳(メタデータ) (2023-12-05T07:52:12Z) - Nash Learning from Human Feedback [86.09617990412941]
ペアワイズフィードバックを用いた大規模言語モデルの微調整のための代替パイプラインを提案する。
我々はこのアプローチを人間のフィードバックからナッシュラーニング(NLHF)と呼ぶ。
ミラー降下原理に基づく新しいアルゴリズム解であるNash-MDを提案する。
論文 参考訳(メタデータ) (2023-12-01T19:26:23Z) - Bridging the Gap: A Survey on Integrating (Human) Feedback for Natural
Language Generation [68.9440575276396]
この調査は、人間のフィードバックを利用して自然言語生成を改善した最近の研究の概要を提供することを目的としている。
まず、フィードバックの形式化を包括的に導入し、この形式化に続いて既存の分類学研究を特定・整理する。
第二に、フィードバックを形式や目的によってどのように記述するかを議論し、フィードバック(トレーニングやデコード)を直接使用したり、フィードバックモデルをトレーニングしたりするための2つのアプローチについて取り上げる。
第3に、AIフィードバックの生まれたばかりの分野の概要を紹介します。これは、大きな言語モデルを利用して、一連の原則に基づいて判断し、必要最小限にします。
論文 参考訳(メタデータ) (2023-05-01T17:36:06Z) - Training Language Models with Language Feedback at Scale [50.70091340506957]
我々は、より情報的な言語フィードバックを利用する新しいアプローチであるLanguage Feedback (ILF)から学習を導入する。
ILFは3つのステップから成り、まず言語モデルを入力に条件付けし、最初のLM出力を出力し、改善を生成する。
理論的には、ILFは人間からのフィードバックによる強化学習と同様、ベイズ推論とみなすことができる。
論文 参考訳(メタデータ) (2023-03-28T17:04:15Z) - Debiasing Vision-Language Models via Biased Prompts [79.04467131711775]
本稿では,テキスト埋め込みにおけるバイアスのある方向を投影することで,視覚言語基盤モデルを疎外する一般的な手法を提案する。
偏平投影行列を組み込んだテキストのみをデバイアスすることで、ロバストな分類器と公正な生成モデルが得られることを示す。
論文 参考訳(メタデータ) (2023-01-31T20:09:33Z) - A General Language Assistant as a Laboratory for Alignment [3.3598752405752106]
簡単なベースライン手法と,プロンプトなどの評価について検討する。
モデルサイズにより, 緩やかな介入による利点が増大し, 様々なアライメント評価に一般化され, 大規模モデルの性能を損なわないことがわかった。
本研究では,人間の嗜好を微調整する際のサンプル効率の向上を目標として,事前学習段階の選好モデルについて検討した。
論文 参考訳(メタデータ) (2021-12-01T22:24:34Z) - Tracing Origins: Coref-aware Machine Reading Comprehension [43.352833140317486]
そこで,本研究では,アナフォリック表現を接続する際の人間の読影過程を模倣し,コア参照情報を活用し,事前学習モデルから単語の埋め込みを強化する。
学習段階におけるコア参照情報の明示的な組み込みは,事前学習言語モデルの訓練において,コア参照情報の組み込みよりも優れていたことを実証した。
論文 参考訳(メタデータ) (2021-10-15T09:28:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。