Defection-Free Collaboration between Competitors in a Learning System
- URL: http://arxiv.org/abs/2406.15898v1
- Date: Sat, 22 Jun 2024 17:29:45 GMT
- Title: Defection-Free Collaboration between Competitors in a Learning System
- Authors: Mariel Werner, Sai Praneeth Karimireddy, Michael I. Jordan,
- Abstract summary: We study collaborative learning systems in which the participants are competitors who will defect from the system if they lose revenue by collaborating.
We propose a more equitable, *defection-free* scheme in which both firms share with each other while losing no revenue.
- Score: 61.22540496065961
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study collaborative learning systems in which the participants are competitors who will defect from the system if they lose revenue by collaborating. As such, we frame the system as a duopoly of competitive firms who are each engaged in training machine-learning models and selling their predictions to a market of consumers. We first examine a fully collaborative scheme in which both firms share their models with each other and show that this leads to a market collapse with the revenues of both firms going to zero. We next show that one-sided collaboration in which only the firm with the lower-quality model shares improves the revenue of both firms. Finally, we propose a more equitable, *defection-free* scheme in which both firms share with each other while losing no revenue, and we show that our algorithm converges to the Nash bargaining solution.
Related papers
- Are we making progress in unlearning? Findings from the first NeurIPS unlearning competition [70.60872754129832]
First NeurIPS competition on unlearning sought to stimulate the development of novel algorithms.
Nearly 1,200 teams from across the world participated.
We analyze top solutions and delve into discussions on benchmarking unlearning.
arXiv Detail & Related papers (2024-06-13T12:58:00Z) - Incentivizing Honesty among Competitors in Collaborative Learning and
Optimization [5.4619385369457225]
Collaborative learning techniques have the potential to enable machine learning models that are superior to models trained on a single entity's data.
In many cases, potential participants in such collaborative schemes are competitors on a downstream task.
arXiv Detail & Related papers (2023-05-25T17:28:41Z) - Strategic Data Sharing between Competitors [4.8951183832371]
We introduce a general framework for analyzing this data-sharing trade-off.
We study an instantiation of the framework, based on a conventional market model from economic theory.
Our findings indicate a profound impact of market conditions on the data-sharing incentives.
arXiv Detail & Related papers (2023-05-25T13:34:12Z) - Finding Regularized Competitive Equilibria of Heterogeneous Agent
Macroeconomic Models with Reinforcement Learning [151.03738099494765]
We study a heterogeneous agent macroeconomic model with an infinite number of households and firms competing in a labor market.
We propose a data-driven reinforcement learning framework that finds the regularized competitive equilibrium of the model.
arXiv Detail & Related papers (2023-02-24T17:16:27Z) - Decentralized, Communication- and Coordination-free Learning in
Structured Matching Markets [2.9833943723592764]
We study the problem of online learning in competitive settings in the context of two-sided matching markets.
We propose a class of decentralized, communication- and coordination-free algorithms that agents can use to reach to their stable match.
arXiv Detail & Related papers (2022-06-06T04:08:04Z) - Learning Equilibria in Matching Markets from Bandit Feedback [139.29934476625488]
We develop a framework and algorithms for learning stable market outcomes under uncertainty.
Our work takes a first step toward elucidating when and how stable matchings arise in large, data-driven marketplaces.
arXiv Detail & Related papers (2021-08-19T17:59:28Z) - One for One, or All for All: Equilibria and Optimality of Collaboration
in Federated Learning [24.196114621742705]
Inspired by game theoretic notions, this paper introduces a framework for incentive-aware learning and data sharing in federated learning.
Our stable and envy-free equilibria capture notions of collaboration in the presence of agents interested in meeting their learning objectives.
arXiv Detail & Related papers (2021-03-04T18:53:17Z) - Predicting Individual Treatment Effects of Large-scale Team Competitions
in a Ride-sharing Economy [47.47879093076968]
We analyze data collected from more than 500 large-scale team competitions organized by a leading ride-sharing platform.
Through a careful investigation of features and predictors, we are able to reduce out-sample prediction error by more than 24%.
A simulated analysis shows that by simply changing a few contest design options, the average treatment effect of a real competition is expected to increase by as much as 26%.
arXiv Detail & Related papers (2020-08-07T22:01:50Z) - Competing Bandits: The Perils of Exploration Under Competition [99.68537519404727]
We study the interplay between exploration and competition on online platforms.
We find that stark competition induces firms to commit to a "greedy" bandit algorithm that leads to low welfare.
We investigate two channels for weakening the competition: relaxing the rationality of users and giving one firm a first-mover advantage.
arXiv Detail & Related papers (2020-07-20T14:19:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.