論文の概要: DISentangled Counterfactual Visual interpretER (DISCOVER) generalizes to natural images
- arxiv url: http://arxiv.org/abs/2406.15918v1
- Date: Sat, 22 Jun 2024 19:05:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 19:53:14.118953
- Title: DISentangled Counterfactual Visual interpretER (DISCOVER) generalizes to natural images
- Title(参考訳): Disentangled Counterfactual Visual Interpreter (DISCOVER) は自然画像に一般化する
- Authors: Oded Rotem, Assaf Zaritsky,
- Abstract要約: 自然画像の領域にDISCOVER(Disentangled Counterfactual Visual InterpretER)を適用することができることを示す。
第一に、ディスコバーは鼻の大きさ、銃口面積、顔の大きさを、犬と猫の顔画像間で区別する意味的識別的視覚特性として視覚的に解釈した。
第二に、ディスコバーは頬、顎、額、髪、眼を識別的な顔の特徴として視覚的に解釈した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We recently presented DISentangled COunterfactual Visual interpretER (DISCOVER), a method toward systematic visual interpretability of image-based classification models and demonstrated its applicability to two biomedical domains. Here we demonstrate that DISCOVER can be applied to the domain of natural images. First, DISCOVER visually interpreted the nose size, the muzzle area, and the face size as semantic discriminative visual traits discriminating between facial images of dogs versus cats. Second, DISCOVER visually interpreted the cheeks and jawline, eyebrows and hair, and the eyes, as discriminative facial characteristics. These successful visual interpretations across two natural images domains indicate that DISCOVER is a generalized interpretability method.
- Abstract(参考訳): 画像ベース分類モデルの系統的視覚的解釈性を示すDISCOVER(Disentangled Counterfactual Visual InterpretER)を提案し,その2つの生体領域への適用性を示した。
ここでは自然画像の領域に適用できることを実証する。
第一に、ディスコバーは鼻の大きさ、銃口面積、顔の大きさを、犬と猫の顔画像間で区別する意味的識別的視覚特性として視覚的に解釈した。
第二に、ディスコバーは頬、顎、額、髪、眼を識別的な顔の特徴として視覚的に解釈した。
これらの2つの自然画像領域における視覚的解釈の成功は、disCOVERが一般化された解釈可能性法であることを示唆している。
関連論文リスト
- When Does Perceptual Alignment Benefit Vision Representations? [76.32336818860965]
視覚モデル表現と人間の知覚的判断との整合がユーザビリティに与える影響について検討する。
モデルと知覚的判断を一致させることで、多くの下流タスクで元のバックボーンを改善する表現が得られることがわかった。
その結果,人間の知覚的知識に関する帰納バイアスを視覚モデルに注入することは,より良い表現に寄与することが示唆された。
論文 参考訳(メタデータ) (2024-10-14T17:59:58Z) - Knowledge-Enhanced Facial Expression Recognition with Emotional-to-Neutral Transformation [66.53435569574135]
既存の表情認識法は、通常、個別のラベルを使って訓練済みのビジュアルエンコーダを微調整する。
視覚言語モデルによって生成されるテキスト埋め込みの豊富な知識は、識別的表情表現を学ぶための有望な代替手段である。
感情-中性変換を用いた知識強化FER法を提案する。
論文 参考訳(メタデータ) (2024-09-13T07:28:57Z) - How Do You Perceive My Face? Recognizing Facial Expressions in Multi-Modal Context by Modeling Mental Representations [5.895694050664867]
本稿では,単純な分類タスクを超越した新しい表情分類手法を提案する。
本モデルでは,認識された顔を正確に分類し,文脈で顔を観察する際,人間によって知覚される対応する心的表現を合成する。
本研究では,人間の心的表現の近似を効果的に生成することを示す。
論文 参考訳(メタデータ) (2024-09-04T09:32:40Z) - Multi-Domain Norm-referenced Encoding Enables Data Efficient Transfer
Learning of Facial Expression Recognition [62.997667081978825]
本稿では,表情認識における伝達学習のための生物学的メカニズムを提案する。
提案アーキテクチャでは,人間の脳が,頭部形状の異なる表情を自然に認識する方法について解説する。
本モデルでは, FERGデータセットの分類精度92.15%を極端に高いデータ効率で達成する。
論文 参考訳(メタデータ) (2023-04-05T09:06:30Z) - A domain adaptive deep learning solution for scanpath prediction of
paintings [66.46953851227454]
本稿では,ある絵画の視覚的体験における視聴者の眼球運動分析に焦点を当てた。
我々は、人間の視覚的注意を予測するための新しいアプローチを導入し、人間の認知機能に影響を及ぼす。
提案した新しいアーキテクチャは、画像を取り込んでスキャンパスを返す。
論文 参考訳(メタデータ) (2022-09-22T22:27:08Z) - Human Eyes Inspired Recurrent Neural Networks are More Robust Against Adversarial Noises [7.689542442882423]
我々は人間の脳にインスパイアされたデュアルストリーム視覚モデルを設計した。
このモデルは網膜のような入力層を特徴とし、次の焦点(固定点)を決定する2つのストリームと、固定点を取り巻く視覚を解釈する2つのストリームを含む。
このモデルを,物体認識,視線行動,対向強靭性の観点から評価した。
論文 参考訳(メタデータ) (2022-06-15T03:44:42Z) - Prune and distill: similar reformatting of image information along rat
visual cortex and deep neural networks [61.60177890353585]
深部畳み込み神経ネットワーク(CNN)は、脳の機能的類似、視覚野の腹側流の優れたモデルを提供することが示されている。
ここでは、CNNまたは視覚野の内部表現で知られているいくつかの顕著な統計的パターンについて考察する。
我々は、CNNと視覚野が、オブジェクト表現の次元展開/縮小と画像情報の再構成と、同様の密接な関係を持っていることを示す。
論文 参考訳(メタデータ) (2022-05-27T08:06:40Z) - InterFaceGAN: Interpreting the Disentangled Face Representation Learned
by GANs [73.27299786083424]
我々は、最先端のGANモデルによって学習された不整合顔表現を解釈するInterFaceGANというフレームワークを提案する。
まず、GANは潜在空間の線型部分空間で様々な意味学を学ぶ。
次に、異なる意味論間の相関関係について詳細な研究を行い、部分空間射影を通してそれらをよりよく解離させる。
論文 参考訳(メタデータ) (2020-05-18T18:01:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。