PUDD: Towards Robust Multi-modal Prototype-based Deepfake Detection
- URL: http://arxiv.org/abs/2406.15921v2
- Date: Sun, 30 Jun 2024 12:04:43 GMT
- Title: PUDD: Towards Robust Multi-modal Prototype-based Deepfake Detection
- Authors: Alvaro Lopez Pellcier, Yi Li, Plamen Angelov,
- Abstract summary: We propose a Prototype-based Unified Framework for Deepfake Detection (PUDD)
PUDD offers a detection system based on similarity, comparing input data against known prototypes for video classification and identifying potential deepfakes or previously unseen classes by analyzing drops in similarity.
Our experiments reveal three key findings: (1) PUDD achieves an accuracy of 95.1% on Celeb-DF, outperforming state-of-the-art deepfake detection methods; (2) PUDD leverages image classification as the upstream task during training, demonstrating promising performance in both image classification and deepfake detection tasks during inference; and (3) PUDD requires only 2.7 seconds for retraining
- Score: 3.824522034247845
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deepfake techniques generate highly realistic data, making it challenging for humans to discern between actual and artificially generated images. Recent advancements in deep learning-based deepfake detection methods, particularly with diffusion models, have shown remarkable progress. However, there is a growing demand for real-world applications to detect unseen individuals, deepfake techniques, and scenarios. To address this limitation, we propose a Prototype-based Unified Framework for Deepfake Detection (PUDD). PUDD offers a detection system based on similarity, comparing input data against known prototypes for video classification and identifying potential deepfakes or previously unseen classes by analyzing drops in similarity. Our extensive experiments reveal three key findings: (1) PUDD achieves an accuracy of 95.1% on Celeb-DF, outperforming state-of-the-art deepfake detection methods; (2) PUDD leverages image classification as the upstream task during training, demonstrating promising performance in both image classification and deepfake detection tasks during inference; (3) PUDD requires only 2.7 seconds for retraining on new data and emits 10$^{5}$ times less carbon compared to the state-of-the-art model, making it significantly more environmentally friendly.
Related papers
- UniForensics: Face Forgery Detection via General Facial Representation [60.5421627990707]
High-level semantic features are less susceptible to perturbations and not limited to forgery-specific artifacts, thus having stronger generalization.
We introduce UniForensics, a novel deepfake detection framework that leverages a transformer-based video network, with a meta-functional face classification for enriched facial representation.
arXiv Detail & Related papers (2024-07-26T20:51:54Z) - AntifakePrompt: Prompt-Tuned Vision-Language Models are Fake Image Detectors [24.78672820633581]
Deep generative models can create remarkably fake images while raising concerns about misinformation and copyright infringement.
Deepfake detection technique is developed to distinguish between real and fake images.
We propose a novel approach called AntifakePrompt, using Vision-Language Models and prompt tuning techniques.
arXiv Detail & Related papers (2023-10-26T14:23:45Z) - CrossDF: Improving Cross-Domain Deepfake Detection with Deep Information Decomposition [53.860796916196634]
We propose a Deep Information Decomposition (DID) framework to enhance the performance of Cross-dataset Deepfake Detection (CrossDF)
Unlike most existing deepfake detection methods, our framework prioritizes high-level semantic features over specific visual artifacts.
It adaptively decomposes facial features into deepfake-related and irrelevant information, only using the intrinsic deepfake-related information for real/fake discrimination.
arXiv Detail & Related papers (2023-09-30T12:30:25Z) - DFIL: Deepfake Incremental Learning by Exploiting Domain-invariant
Forgery Clues [32.045504965382015]
Current deepfake detection models can generally recognize forgery images by training on a large dataset.
The accuracy of detection models degrades significantly on images generated by new deepfake methods due to the difference in data distribution.
We present a novel incremental learning framework that improves the generalization of deepfake detection models.
arXiv Detail & Related papers (2023-09-18T07:02:26Z) - Deep Convolutional Pooling Transformer for Deepfake Detection [54.10864860009834]
We propose a deep convolutional Transformer to incorporate decisive image features both locally and globally.
Specifically, we apply convolutional pooling and re-attention to enrich the extracted features and enhance efficacy.
The proposed solution consistently outperforms several state-of-the-art baselines on both within- and cross-dataset experiments.
arXiv Detail & Related papers (2022-09-12T15:05:41Z) - Metamorphic Testing-based Adversarial Attack to Fool Deepfake Detectors [2.0649235321315285]
There is a dire need for deepfake detection technology to help spot deepfake media.
Current deepfake detection models are able to achieve outstanding accuracy (>90%)
This study identifies makeup application as an adversarial attack that could fool deepfake detectors.
arXiv Detail & Related papers (2022-04-19T02:24:30Z) - An Experimental Evaluation on Deepfake Detection using Deep Face
Recognition [0.0]
Deep learning has led to the generation of very realistic fake content, also known as deepfakes.
Most of the current deepfake detection methods are deemed as a binary classification problem in distinguishing authentic images or videos from fake ones using two-class convolutional neural networks (CNNs)
This paper thoroughly evaluate the efficacy of deep face recognition in identifying deepfakes, using different loss functions and deepfake generation techniques.
arXiv Detail & Related papers (2021-10-04T18:02:56Z) - TAR: Generalized Forensic Framework to Detect Deepfakes using Weakly
Supervised Learning [17.40885531847159]
Deepfakes have become a critical social problem, and detecting them is of utmost importance.
In this work, we introduce a practical digital forensic tool to detect different types of deepfakes simultaneously.
We develop an autoencoder-based detection model with Residual blocks and sequentially perform transfer learning to detect different types of deepfakes simultaneously.
arXiv Detail & Related papers (2021-05-13T07:31:08Z) - M2TR: Multi-modal Multi-scale Transformers for Deepfake Detection [74.19291916812921]
forged images generated by Deepfake techniques pose a serious threat to the trustworthiness of digital information.
In this paper, we aim to capture the subtle manipulation artifacts at different scales for Deepfake detection.
We introduce a high-quality Deepfake dataset, SR-DF, which consists of 4,000 DeepFake videos generated by state-of-the-art face swapping and facial reenactment methods.
arXiv Detail & Related papers (2021-04-20T05:43:44Z) - Diverse Knowledge Distillation for End-to-End Person Search [81.4926655119318]
Person search aims to localize and identify a specific person from a gallery of images.
Recent methods can be categorized into two groups, i.e., two-step and end-to-end approaches.
We propose a simple yet strong end-to-end network with diverse knowledge distillation to break the bottleneck.
arXiv Detail & Related papers (2020-12-21T09:04:27Z) - Artificial Fingerprinting for Generative Models: Rooting Deepfake
Attribution in Training Data [64.65952078807086]
Photorealistic image generation has reached a new level of quality due to the breakthroughs of generative adversarial networks (GANs)
Yet, the dark side of such deepfakes, the malicious use of generated media, raises concerns about visual misinformation.
We seek a proactive and sustainable solution on deepfake detection by introducing artificial fingerprints into the models.
arXiv Detail & Related papers (2020-07-16T16:49:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.