Artificial Fingerprinting for Generative Models: Rooting Deepfake
Attribution in Training Data
- URL: http://arxiv.org/abs/2007.08457v7
- Date: Thu, 17 Mar 2022 20:45:53 GMT
- Title: Artificial Fingerprinting for Generative Models: Rooting Deepfake
Attribution in Training Data
- Authors: Ning Yu, Vladislav Skripniuk, Sahar Abdelnabi, Mario Fritz
- Abstract summary: Photorealistic image generation has reached a new level of quality due to the breakthroughs of generative adversarial networks (GANs)
Yet, the dark side of such deepfakes, the malicious use of generated media, raises concerns about visual misinformation.
We seek a proactive and sustainable solution on deepfake detection by introducing artificial fingerprints into the models.
- Score: 64.65952078807086
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Photorealistic image generation has reached a new level of quality due to the
breakthroughs of generative adversarial networks (GANs). Yet, the dark side of
such deepfakes, the malicious use of generated media, raises concerns about
visual misinformation. While existing research work on deepfake detection
demonstrates high accuracy, it is subject to advances in generation techniques
and adversarial iterations on detection countermeasure techniques. Thus, we
seek a proactive and sustainable solution on deepfake detection, that is
agnostic to the evolution of generative models, by introducing artificial
fingerprints into the models.
Our approach is simple and effective. We first embed artificial fingerprints
into training data, then validate a surprising discovery on the transferability
of such fingerprints from training data to generative models, which in turn
appears in the generated deepfakes. Experiments show that our fingerprinting
solution (1) holds for a variety of cutting-edge generative models, (2) leads
to a negligible side effect on generation quality, (3) stays robust against
image-level and model-level perturbations, (4) stays hard to be detected by
adversaries, and (5) converts deepfake detection and attribution into trivial
tasks and outperforms the recent state-of-the-art baselines. Our solution
closes the responsibility loop between publishing pre-trained generative model
inventions and their possible misuses, which makes it independent of the
current arms race. Code and models are available at
https://github.com/ningyu1991/ArtificialGANFingerprints .
Related papers
- UniForensics: Face Forgery Detection via General Facial Representation [60.5421627990707]
High-level semantic features are less susceptible to perturbations and not limited to forgery-specific artifacts, thus having stronger generalization.
We introduce UniForensics, a novel deepfake detection framework that leverages a transformer-based video network, with a meta-functional face classification for enriched facial representation.
arXiv Detail & Related papers (2024-07-26T20:51:54Z) - Deepfake Sentry: Harnessing Ensemble Intelligence for Resilient Detection and Generalisation [0.8796261172196743]
We propose a proactive and sustainable deepfake training augmentation solution.
We employ a pool of autoencoders that mimic the effect of the artefacts introduced by the deepfake generator models.
Experiments reveal that our proposed ensemble autoencoder-based data augmentation learning approach offers improvements in terms of generalisation.
arXiv Detail & Related papers (2024-03-29T19:09:08Z) - Deepfake Generation and Detection: A Benchmark and Survey [134.19054491600832]
Deepfake is a technology dedicated to creating highly realistic facial images and videos under specific conditions.
This survey comprehensively reviews the latest developments in deepfake generation and detection.
We focus on researching four representative deepfake fields: face swapping, face reenactment, talking face generation, and facial attribute editing.
arXiv Detail & Related papers (2024-03-26T17:12:34Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
Deepfakes are realistic face manipulations that can pose serious threats to security, privacy, and trust.
Existing methods mostly treat this task as binary classification, which uses digital labels or mask signals to train the detection model.
We propose a novel paradigm named Visual-Linguistic Face Forgery Detection(VLFFD), which uses fine-grained sentence-level prompts as the annotation.
arXiv Detail & Related papers (2023-07-31T10:22:33Z) - Deep Image Fingerprint: Towards Low Budget Synthetic Image Detection and Model Lineage Analysis [8.777277201807351]
We develop a new detection method for images that are indistinguishable from real ones.
Our method can detect images from a known generative model and enable us to establish relationships between fine-tuned generative models.
Our approach achieves comparable performance to state-of-the-art pre-trained detection methods on images generated by Stable Diffusion and Midversa.
arXiv Detail & Related papers (2023-03-19T20:31:38Z) - SeeABLE: Soft Discrepancies and Bounded Contrastive Learning for
Exposing Deepfakes [7.553507857251396]
We propose a novel deepfake detector, called SeeABLE, that formalizes the detection problem as a (one-class) out-of-distribution detection task.
SeeABLE pushes perturbed faces towards predefined prototypes using a novel regression-based bounded contrastive loss.
We show that our model convincingly outperforms competing state-of-the-art detectors, while exhibiting highly encouraging generalization capabilities.
arXiv Detail & Related papers (2022-11-21T09:38:30Z) - Self-supervised GAN Detector [10.963740942220168]
generative models can be abused with malicious purposes, such as fraud, defamation, and fake news.
We propose a novel framework to distinguish the unseen generated images outside of the training settings.
Our proposed method is composed of the artificial fingerprint generator reconstructing the high-quality artificial fingerprints of GAN images.
arXiv Detail & Related papers (2021-11-12T06:19:04Z) - Beyond the Spectrum: Detecting Deepfakes via Re-Synthesis [69.09526348527203]
Deep generative models have led to highly realistic media, known as deepfakes, that are commonly indistinguishable from real to human eyes.
We propose a novel fake detection that is designed to re-synthesize testing images and extract visual cues for detection.
We demonstrate the improved effectiveness, cross-GAN generalization, and robustness against perturbations of our approach in a variety of detection scenarios.
arXiv Detail & Related papers (2021-05-29T21:22:24Z) - Responsible Disclosure of Generative Models Using Scalable
Fingerprinting [70.81987741132451]
Deep generative models have achieved a qualitatively new level of performance.
There are concerns on how this technology can be misused to spoof sensors, generate deep fakes, and enable misinformation at scale.
Our work enables a responsible disclosure of such state-of-the-art generative models, that allows researchers and companies to fingerprint their models.
arXiv Detail & Related papers (2020-12-16T03:51:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.