Towards Exact Computation of Inductive Bias
- URL: http://arxiv.org/abs/2406.15941v1
- Date: Sat, 22 Jun 2024 21:14:24 GMT
- Title: Towards Exact Computation of Inductive Bias
- Authors: Akhilan Boopathy, William Yue, Jaedong Hwang, Abhiram Iyer, Ila Fiete,
- Abstract summary: We propose a novel method for efficiently computing the inductive bias required for generalization on a task.
We show that higher dimensional tasks require greater inductive bias.
Our proposed inductive bias metric provides an information-theoretic interpretation of the benefits of specific model architectures.
- Score: 8.988109761916379
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Much research in machine learning involves finding appropriate inductive biases (e.g. convolutional neural networks, momentum-based optimizers, transformers) to promote generalization on tasks. However, quantification of the amount of inductive bias associated with these architectures and hyperparameters has been limited. We propose a novel method for efficiently computing the inductive bias required for generalization on a task with a fixed training data budget; formally, this corresponds to the amount of information required to specify well-generalizing models within a specific hypothesis space of models. Our approach involves modeling the loss distribution of random hypotheses drawn from a hypothesis space to estimate the required inductive bias for a task relative to these hypotheses. Unlike prior work, our method provides a direct estimate of inductive bias without using bounds and is applicable to diverse hypothesis spaces. Moreover, we derive approximation error bounds for our estimation approach in terms of the number of sampled hypotheses. Consistent with prior results, our empirical results demonstrate that higher dimensional tasks require greater inductive bias. We show that relative to other expressive model classes, neural networks as a model class encode large amounts of inductive bias. Furthermore, our measure quantifies the relative difference in inductive bias between different neural network architectures. Our proposed inductive bias metric provides an information-theoretic interpretation of the benefits of specific model architectures for certain tasks and provides a quantitative guide to developing tasks requiring greater inductive bias, thereby encouraging the development of more powerful inductive biases.
Related papers
- An Effective Theory of Bias Amplification [18.648588509429167]
Machine learning models may capture and amplify biases present in data, leading to disparate test performance across social groups.
We propose a precise analytical theory in the context of ridge regression, where the former models neural networks in a simplified regime.
Our theory offers a unified and rigorous explanation of machine learning bias, providing insights into phenomena such as bias amplification and minority-group bias.
arXiv Detail & Related papers (2024-10-07T08:43:22Z) - On the Inductive Bias of Stacking Towards Improving Reasoning [50.225873619537765]
We propose a variant of gradual stacking called MIDAS that can speed up language model training by up to 40%.
MIDAS is not only training-efficient but surprisingly also has an inductive bias towards improving downstream tasks.
We conjecture the underlying reason for this inductive bias by exploring the connection of stacking to looped models.
arXiv Detail & Related papers (2024-09-27T17:58:21Z) - Learning Latent Graph Structures and their Uncertainty [63.95971478893842]
Graph Neural Networks (GNNs) use relational information as an inductive bias to enhance the model's accuracy.
As task-relevant relations might be unknown, graph structure learning approaches have been proposed to learn them while solving the downstream prediction task.
arXiv Detail & Related papers (2024-05-30T10:49:22Z) - Theoretical Insights for Diffusion Guidance: A Case Study for Gaussian
Mixture Models [59.331993845831946]
Diffusion models benefit from instillation of task-specific information into the score function to steer the sample generation towards desired properties.
This paper provides the first theoretical study towards understanding the influence of guidance on diffusion models in the context of Gaussian mixture models.
arXiv Detail & Related papers (2024-03-03T23:15:48Z) - Instilling Inductive Biases with Subnetworks [19.444844580405594]
Subtask Induction instills inductive biases towards solutions utilizing a subtask.
We show that Subtask Induction significantly reduces the amount of training data required for a model to adopt a specific, generalizable solution.
arXiv Detail & Related papers (2023-10-17T00:12:19Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
We propose a framework for efficient and effective counterfactual inference implemented with neural networks.
The proposed approach enhances the capacity to generalize estimated counterfactual outcomes to unseen data.
Empirical results conducted on multiple datasets offer compelling support for our theoretical assertions.
arXiv Detail & Related papers (2023-06-09T08:30:51Z) - Learning to Estimate Without Bias [57.82628598276623]
Gauss theorem states that the weighted least squares estimator is a linear minimum variance unbiased estimation (MVUE) in linear models.
In this paper, we take a first step towards extending this result to non linear settings via deep learning with bias constraints.
A second motivation to BCE is in applications where multiple estimates of the same unknown are averaged for improved performance.
arXiv Detail & Related papers (2021-10-24T10:23:51Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - LIME: Learning Inductive Bias for Primitives of Mathematical Reasoning [30.610670366488943]
We replace architecture engineering by encoding inductive bias in datasets.
Inspired by Peirce's view that deduction, induction, and abduction form an irreducible set of reasoning primitives, we design three synthetic tasks that are intended to require the model to have these three abilities.
Models trained with LIME significantly outperform vanilla transformers on three very different large mathematical reasoning benchmarks.
arXiv Detail & Related papers (2021-01-15T17:15:24Z) - Extrapolatable Relational Reasoning With Comparators in Low-Dimensional
Manifolds [7.769102711230249]
We propose a neuroscience-inspired inductive-biased module that can be readily amalgamated with current neural network architectures.
We show that neural nets with this inductive bias achieve considerably better o.o.d generalisation performance for a range of relational reasoning tasks.
arXiv Detail & Related papers (2020-06-15T19:09:13Z) - Transferring Inductive Biases through Knowledge Distillation [21.219305008067735]
We explore the power of knowledge distillation for transferring the effect of inductive biases from one model to another.
We study the effect of inductive biases on the solutions the models converge to and investigate how and to what extent the effect of inductive biases is transferred through knowledge distillation.
arXiv Detail & Related papers (2020-05-31T16:34:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.