Modular Pluralism: Pluralistic Alignment via Multi-LLM Collaboration
- URL: http://arxiv.org/abs/2406.15951v2
- Date: Fri, 11 Oct 2024 00:05:03 GMT
- Title: Modular Pluralism: Pluralistic Alignment via Multi-LLM Collaboration
- Authors: Shangbin Feng, Taylor Sorensen, Yuhan Liu, Jillian Fisher, Chan Young Park, Yejin Choi, Yulia Tsvetkov,
- Abstract summary: Large language models (LLMs) struggle to model diverse preferences across cultures, demographics, and communities.
We propose Modular Pluralism, a modular framework based on multi-LLM collaboration for pluralistic alignment.
We evaluate Modular Pluralism with six tasks and four datasets featuring questions/instructions with value-laden and perspective-informed responses.
- Score: 84.47037877922293
- License:
- Abstract: While existing alignment paradigms have been integral in developing large language models (LLMs), LLMs often learn an averaged human preference and struggle to model diverse preferences across cultures, demographics, and communities. We propose Modular Pluralism, a modular framework based on multi-LLM collaboration for pluralistic alignment: it "plugs into" a base LLM a pool of smaller but specialized community LMs, where models collaborate in distinct modes to flexibility support three modes of pluralism: Overton, steerable, and distributional. Modular Pluralism is uniquely compatible with black-box LLMs and offers the modular control of adding new community LMs for previously underrepresented communities. We evaluate Modular Pluralism with six tasks and four datasets featuring questions/instructions with value-laden and perspective-informed responses. Extensive experiments demonstrate that Modular Pluralism advances the three pluralism objectives across six black-box and open-source LLMs. Further analysis reveals that LLMs are generally faithful to the inputs from smaller community LLMs, allowing seamless patching by adding a new community LM to better cover previously underrepresented communities.
Related papers
- Investigating Large Language Models for Complex Word Identification in Multilingual and Multidomain Setups [1.8377902806196766]
Complex Word Identification (CWI) is an essential step in the lexical simplification task and has recently become a task on its own.
Large language models (LLMs) recently became popular in the Natural Language Processing community because of their versatility and capability to solve unseen tasks in zero/few-shot settings.
Our work investigates LLM usage, specifically open-source models such as Llama 2, Llama 3, and Vicuna v1.5, and closed-source, such as ChatGPT-3.5-turbo and GPT-4o, in the CWI, LCP, and MWE settings.
arXiv Detail & Related papers (2024-11-03T22:31:02Z) - TinyLLM: Learning a Small Student from Multiple Large Language Models [23.736611338497244]
TinyLLM is a new knowledge distillation paradigm to learn a small student LLM from multiple large teacher LLMs.
We introduce an in-context example generator and a teacher-forcing Chain-of-Thought strategy to ensure that the rationales are accurate and grounded in contextually appropriate scenarios.
arXiv Detail & Related papers (2024-02-07T06:48:24Z) - Knowledge Fusion of Large Language Models [73.28202188100646]
This paper introduces the notion of knowledge fusion for large language models (LLMs)
We externalize their collective knowledge and unique strengths, thereby elevating the capabilities of the target model beyond those of any individual source LLM.
Our findings confirm that the fusion of LLMs can improve the performance of the target model across a range of capabilities such as reasoning, commonsense, and code generation.
arXiv Detail & Related papers (2024-01-19T05:02:46Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - A Group Fairness Lens for Large Language Models [34.0579082699443]
Large language models can perpetuate biases and unfairness when deployed in social media contexts.
We propose evaluating LLM biases from a group fairness lens using a novel hierarchical schema characterizing diverse social groups.
We pioneer a novel chain-of-thought method GF-Think to mitigate biases of LLMs from a group fairness perspective.
arXiv Detail & Related papers (2023-12-24T13:25:15Z) - Towards Vision Enhancing LLMs: Empowering Multimodal Knowledge Storage
and Sharing in LLMs [72.49064988035126]
We propose an approach called MKS2, aimed at enhancing multimodal large language models (MLLMs)
Specifically, we introduce the Modular Visual Memory, a component integrated into the internal blocks of LLMs, designed to store open-world visual information efficiently.
Our experiments demonstrate that MKS2 substantially augments the reasoning capabilities of LLMs in contexts necessitating physical or commonsense knowledge.
arXiv Detail & Related papers (2023-11-27T12:29:20Z) - A Survey on Multimodal Large Language Models [71.63375558033364]
Multimodal Large Language Model (MLLM) represented by GPT-4V has been a new rising research hotspot.
This paper aims to trace and summarize the recent progress of MLLMs.
arXiv Detail & Related papers (2023-06-23T15:21:52Z) - Macaw-LLM: Multi-Modal Language Modeling with Image, Audio, Video, and
Text Integration [50.94902442781148]
We propose a novel multi-modal large language model (LLM) that seamlessly integrates visual, audio, and textual information.
Macaw-LLM consists of three main components: a modality module for encoding multi-modal data, a cognitive module for harnessing pretrained LLMs, and an alignment module for harmonizing diverse representations.
We construct a large-scale multi-modal instruction dataset in terms of multi-turn dialogue, including 69K image instances and 50K video instances.
arXiv Detail & Related papers (2023-06-15T12:45:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.