When One LLM Drools, Multi-LLM Collaboration Rules
- URL: http://arxiv.org/abs/2502.04506v1
- Date: Thu, 06 Feb 2025 21:13:44 GMT
- Title: When One LLM Drools, Multi-LLM Collaboration Rules
- Authors: Shangbin Feng, Wenxuan Ding, Alisa Liu, Zifeng Wang, Weijia Shi, Yike Wang, Zejiang Shen, Xiaochuang Han, Hunter Lang, Chen-Yu Lee, Tomas Pfister, Yejin Choi, Yulia Tsvetkov,
- Abstract summary: We argue for multi-LLM collaboration to better represent the extensive diversity of data, skills, and people.
We organize existing multi-LLM collaboration methods into a hierarchy, based on the level of access and information exchange.
We envision multi-LLM collaboration as an essential path toward compositional intelligence and collaborative AI development.
- Score: 98.71562711695991
- License:
- Abstract: This position paper argues that in many realistic (i.e., complex, contextualized, subjective) scenarios, one LLM is not enough to produce a reliable output. We challenge the status quo of relying solely on a single general-purpose LLM and argue for multi-LLM collaboration to better represent the extensive diversity of data, skills, and people. We first posit that a single LLM underrepresents real-world data distributions, heterogeneous skills, and pluralistic populations, and that such representation gaps cannot be trivially patched by further training a single LLM. We then organize existing multi-LLM collaboration methods into a hierarchy, based on the level of access and information exchange, ranging from API-level, text-level, logit-level, to weight-level collaboration. Based on these methods, we highlight how multi-LLM collaboration addresses challenges that a single LLM struggles with, such as reliability, democratization, and pluralism. Finally, we identify the limitations of existing multi-LLM methods and motivate future work. We envision multi-LLM collaboration as an essential path toward compositional intelligence and collaborative AI development.
Related papers
- Multi-LLM Text Summarization [58.74987409988719]
We propose a Multi-LLM summarization framework, and investigate two different multi-LLM strategies including centralized and decentralized.
Our framework has two fundamentally important steps at each round of conversation: generation and evaluation.
We find that our multi-LLM summarization approaches significantly outperform the baselines that leverage only a single LLM by up to 3x.
arXiv Detail & Related papers (2024-12-20T01:55:26Z) - MALT: Improving Reasoning with Multi-Agent LLM Training [64.13803241218886]
We present a first step toward "Multi-agent LLM training" (MALT) on reasoning problems.
Our approach employs a sequential multi-agent setup with heterogeneous LLMs assigned specialized roles.
We evaluate our approach across MATH, GSM8k, and CQA, where MALT on Llama 3.1 8B models achieves relative improvements of 14.14%, 7.12%, and 9.40% respectively.
arXiv Detail & Related papers (2024-12-02T19:30:36Z) - Merge, Ensemble, and Cooperate! A Survey on Collaborative Strategies in the Era of Large Language Models [32.336273322481276]
Despite their diverse capabilities, Large Language Models (LLMs) exhibit varying strengths and weaknesses.
To address these challenges, recent studies have explored collaborative strategies for LLMs.
This paper provides a comprehensive overview of this emerging research area, highlighting the motivation behind such collaborations.
arXiv Detail & Related papers (2024-07-08T16:29:08Z) - CollabStory: Multi-LLM Collaborative Story Generation and Authorship Analysis [5.929552001093879]
We generate the first exclusively LLM-generated collaborative stories dataset called CollabStory.
We generate over 32k stories using open-source instruction-tuned LLMs.
We extend their authorship-related tasks for multi-LLM settings and present baselines for LLM-LLM collaboration.
arXiv Detail & Related papers (2024-06-18T14:35:12Z) - LLM-based Multi-Agent Reinforcement Learning: Current and Future Directions [8.55917897789612]
We focus on the cooperative tasks of multiple agents with a common goal and communication among them.
We also consider human-in/on-the-loop scenarios enabled by the language component in the framework.
arXiv Detail & Related papers (2024-05-17T22:10:23Z) - Knowledge Fusion of Large Language Models [73.28202188100646]
This paper introduces the notion of knowledge fusion for large language models (LLMs)
We externalize their collective knowledge and unique strengths, thereby elevating the capabilities of the target model beyond those of any individual source LLM.
Our findings confirm that the fusion of LLMs can improve the performance of the target model across a range of capabilities such as reasoning, commonsense, and code generation.
arXiv Detail & Related papers (2024-01-19T05:02:46Z) - Small LLMs Are Weak Tool Learners: A Multi-LLM Agent [73.54562551341454]
Large Language Model (LLM) agents significantly extend the capabilities of standalone LLMs.
We propose a novel approach that decomposes the aforementioned capabilities into a planner, caller, and summarizer.
This modular framework facilitates individual updates and the potential use of smaller LLMs for building each capability.
arXiv Detail & Related papers (2024-01-14T16:17:07Z) - Corex: Pushing the Boundaries of Complex Reasoning through Multi-Model Collaboration [83.4031923134958]
Corex is a suite of novel general-purpose strategies that transform Large Language Models into autonomous agents.
Inspired by human behaviors, Corex is constituted by diverse collaboration paradigms including Debate, Review, and Retrieve modes.
We demonstrate that orchestrating multiple LLMs to work in concert yields substantially better performance compared to existing methods.
arXiv Detail & Related papers (2023-09-30T07:11:39Z) - Examining Inter-Consistency of Large Language Models Collaboration: An
In-depth Analysis via Debate [41.949869545423375]
Large Language Models (LLMs) have shown impressive capabilities in various applications, but they still face various inconsistency issues.
To examine whether LLMs can collaborate effectively to achieve a consensus for a shared goal, we focus on commonsense reasoning.
Our work contributes to understanding the inter-consistency among LLMs and lays the foundation for developing future collaboration methods.
arXiv Detail & Related papers (2023-05-19T11:15:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.