Beyond the Doors of Perception: Vision Transformers Represent Relations Between Objects
- URL: http://arxiv.org/abs/2406.15955v1
- Date: Sat, 22 Jun 2024 22:43:10 GMT
- Title: Beyond the Doors of Perception: Vision Transformers Represent Relations Between Objects
- Authors: Michael A. Lepori, Alexa R. Tartaglini, Wai Keen Vong, Thomas Serre, Brenden M. Lake, Ellie Pavlick,
- Abstract summary: Vision transformers (ViTs) have achieved state-of-the-art performance in a variety of settings.
However, they exhibit surprising failures when performing tasks involving visual relations.
- Score: 30.09778169168547
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Though vision transformers (ViTs) have achieved state-of-the-art performance in a variety of settings, they exhibit surprising failures when performing tasks involving visual relations. This begs the question: how do ViTs attempt to perform tasks that require computing visual relations between objects? Prior efforts to interpret ViTs tend to focus on characterizing relevant low-level visual features. In contrast, we adopt methods from mechanistic interpretability to study the higher-level visual algorithms that ViTs use to perform abstract visual reasoning. We present a case study of a fundamental, yet surprisingly difficult, relational reasoning task: judging whether two visual entities are the same or different. We find that pretrained ViTs fine-tuned on this task often exhibit two qualitatively different stages of processing despite having no obvious inductive biases to do so: 1) a perceptual stage wherein local object features are extracted and stored in a disentangled representation, and 2) a relational stage wherein object representations are compared. In the second stage, we find evidence that ViTs can learn to represent somewhat abstract visual relations, a capability that has long been considered out of reach for artificial neural networks. Finally, we demonstrate that failure points at either stage can prevent a model from learning a generalizable solution to our fairly simple tasks. By understanding ViTs in terms of discrete processing stages, one can more precisely diagnose and rectify shortcomings of existing and future models.
Related papers
- ViT-Lens: Towards Omni-modal Representations [64.66508684336614]
ViT-Lens-2 is a framework for representation learning of increasing modalities.
We show that ViT-Lens-2 can learn representations for 3D point cloud, depth, audio, tactile and EEG.
By seamlessly integrating ViT-Lens-2 into Multimodal Foundation Models, we enable Any-modality to Text and Image Generation.
arXiv Detail & Related papers (2023-11-27T18:52:09Z) - Interpretability-Aware Vision Transformer [13.310757078491916]
Vision Transformers (ViTs) have become prominent models for solving various vision tasks.
We introduce a novel training procedure that inherently enhances model interpretability.
IA-ViT is composed of a feature extractor, a predictor, and an interpreter, which are trained jointly with an interpretability-aware training objective.
arXiv Detail & Related papers (2023-09-14T21:50:49Z) - What do Vision Transformers Learn? A Visual Exploration [68.50771218442776]
Vision transformers (ViTs) are quickly becoming the de-facto architecture for computer vision.
This paper addresses the obstacles to performing visualizations on ViTs and explores the underlying differences between ViTs and CNNs.
We also conduct large-scale visualizations on a range of ViT variants, including DeiT, CoaT, ConViT, PiT, Swin, and Twin.
arXiv Detail & Related papers (2022-12-13T16:55:12Z) - Vision Transformer Visualization: What Neurons Tell and How Neurons
Behave? [33.87454837848252]
We propose an effective visualization technique to assist us in exposing the information carried in neurons and feature embeddings across the vision transformers (ViTs)
Our approach departs from the computational process of ViTs with a focus on visualizing the local and global information in input images and the latent feature embeddings at multiple levels.
Next, we develop a rigorous framework to perform effective visualizations across layers, exposing the effects of ViTs filters and grouping/clustering behaviors to object patches.
arXiv Detail & Related papers (2022-10-14T08:56:24Z) - Task Formulation Matters When Learning Continually: A Case Study in
Visual Question Answering [58.82325933356066]
Continual learning aims to train a model incrementally on a sequence of tasks without forgetting previous knowledge.
We present a detailed study of how different settings affect performance for Visual Question Answering.
arXiv Detail & Related papers (2022-09-30T19:12:58Z) - Patch-level Representation Learning for Self-supervised Vision
Transformers [68.8862419248863]
Vision Transformers (ViTs) have gained much attention recently as a better architectural choice, often outperforming convolutional networks for various visual tasks.
Inspired by this, we design a simple yet effective visual pretext task, coined SelfPatch, for learning better patch-level representations.
We demonstrate that SelfPatch can significantly improve the performance of existing SSL methods for various visual tasks.
arXiv Detail & Related papers (2022-06-16T08:01:19Z) - RelViT: Concept-guided Vision Transformer for Visual Relational
Reasoning [139.0548263507796]
We use vision transformers (ViTs) as our base model for visual reasoning.
We make better use of concepts defined as object entities and their relations to improve the reasoning ability of ViTs.
We show the resulting model, Concept-guided Vision Transformer (or RelViT for short), significantly outperforms prior approaches on HICO and GQA benchmarks.
arXiv Detail & Related papers (2022-04-24T02:46:43Z) - Intriguing Properties of Vision Transformers [114.28522466830374]
Vision transformers (ViT) have demonstrated impressive performance across various machine vision problems.
We systematically study this question via an extensive set of experiments and comparisons with a high-performing convolutional neural network (CNN)
We show effective features of ViTs are due to flexible receptive and dynamic fields possible via the self-attention mechanism.
arXiv Detail & Related papers (2021-05-21T17:59:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.