Imperfect-Recall Games: Equilibrium Concepts and Their Complexity
- URL: http://arxiv.org/abs/2406.15970v1
- Date: Sun, 23 Jun 2024 00:27:28 GMT
- Title: Imperfect-Recall Games: Equilibrium Concepts and Their Complexity
- Authors: Emanuel Tewolde, Brian Hu Zhang, Caspar Oesterheld, Manolis Zampetakis, Tuomas Sandholm, Paul W. Goldberg, Vincent Conitzer,
- Abstract summary: We investigate optimal decision making under imperfect recall, that is, when an agent forgets information it once held before.
In the framework of extensive-form games with imperfect recall, we analyze the computational complexities of finding equilibria in multiplayer settings.
- Score: 74.01381499760288
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate optimal decision making under imperfect recall, that is, when an agent forgets information it once held before. An example is the absentminded driver game, as well as team games in which the members have limited communication capabilities. In the framework of extensive-form games with imperfect recall, we analyze the computational complexities of finding equilibria in multiplayer settings across three different solution concepts: Nash, multiselves based on evidential decision theory (EDT), and multiselves based on causal decision theory (CDT). We are interested in both exact and approximate solution computation. As special cases, we consider (1) single-player games, (2) two-player zero-sum games and relationships to maximin values, and (3) games without exogenous stochasticity (chance nodes). We relate these problems to the complexity classes P, PPAD, PLS, $\Sigma_2^P$ , $\exists$R, and $\exists \forall$R.
Related papers
- Securing Equal Share: A Principled Approach for Learning Multiplayer Symmetric Games [21.168085154982712]
equilibria in multiplayer games are neither unique nor non-exploitable.
This paper takes an initial step towards addressing these challenges by focusing on the natural objective of equal share.
We design a series of efficient algorithms, inspired by no-regret learning, that provably attain approximate equal share across various settings.
arXiv Detail & Related papers (2024-06-06T15:59:17Z) - Optimistic Policy Gradient in Multi-Player Markov Games with a Single
Controller: Convergence Beyond the Minty Property [89.96815099996132]
We develop a new framework to characterize optimistic policy gradient methods in multi-player games with a single controller.
Our approach relies on a natural generalization of the classical Minty property that we introduce, which we anticipate to have further applications beyond Markov games.
arXiv Detail & Related papers (2023-12-19T11:34:10Z) - The Computational Complexity of Single-Player Imperfect-Recall Games [37.550554344575]
We study extensive-form games with imperfect recall, such as the Sleeping Beauty problem or the Absent Driver game.
For such games, two natural equilibrium concepts have been proposed as alternative solution concepts to ex-ante optimality.
arXiv Detail & Related papers (2023-05-28T19:41:25Z) - Abstracting Imperfect Information Away from Two-Player Zero-Sum Games [85.27865680662973]
Nayyar et al. (2013) showed that imperfect information can be abstracted away from common-payoff games by having players publicly announce their policies as they play.
This work shows that certain regularized equilibria do not possess the aforementioned non-correspondence problem.
Because these regularized equilibria can be made arbitrarily close to Nash equilibria, our result opens the door to a new perspective to solving two-player zero-sum games.
arXiv Detail & Related papers (2023-01-22T16:54:06Z) - Learning Correlated Equilibria in Mean-Field Games [62.14589406821103]
We develop the concepts of Mean-Field correlated and coarse-correlated equilibria.
We show that they can be efficiently learnt in emphall games, without requiring any additional assumption on the structure of the game.
arXiv Detail & Related papers (2022-08-22T08:31:46Z) - Near-Optimal Learning of Extensive-Form Games with Imperfect Information [54.55092907312749]
We present the first line of algorithms that require only $widetildemathcalO((XA+YB)/varepsilon2)$ episodes of play to find an $varepsilon$-approximate Nash equilibrium in two-player zero-sum games.
This improves upon the best known sample complexity of $widetildemathcalO((X2A+Y2B)/varepsilon2)$ by a factor of $widetildemathcalO(maxX,
arXiv Detail & Related papers (2022-02-03T18:18:28Z) - Towards convergence to Nash equilibria in two-team zero-sum games [17.4461045395989]
Two-team zero-sum games are defined as multi-player games where players are split into two competing sets of agents.
We focus on the solution concept of Nash equilibria (NE)
We show that computing NE for this class of games is $textithard$ for the complexity class $mathrm$.
arXiv Detail & Related papers (2021-11-07T21:15:35Z) - Computing Nash Equilibria in Multiplayer DAG-Structured Stochastic Games
with Persistent Imperfect Information [1.7132914341329848]
We present an algorithm for approximating Nash equilibrium in multiplayer general-suming games with persistent imperfect information.
Using a new procedure, we are able to demonstrate that our algorithm computes a strategy that closely approximates Nash equilibrium in this game.
arXiv Detail & Related papers (2020-10-26T19:27:26Z) - Signaling in Bayesian Network Congestion Games: the Subtle Power of
Symmetry [66.82463322411614]
The paper focuses on the problem of optimal ex ante persuasive signaling schemes, showing that symmetry is a crucial property for its solution.
We show that an optimal ex ante persuasive scheme can be computed in time when players are symmetric and have affine cost functions.
arXiv Detail & Related papers (2020-02-12T19:38:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.