Wound Tissue Segmentation in Diabetic Foot Ulcer Images Using Deep Learning: A Pilot Study
- URL: http://arxiv.org/abs/2406.16012v1
- Date: Sun, 23 Jun 2024 05:01:51 GMT
- Title: Wound Tissue Segmentation in Diabetic Foot Ulcer Images Using Deep Learning: A Pilot Study
- Authors: Mrinal Kanti Dhar, Chuanbo Wang, Yash Patel, Taiyu Zhang, Jeffrey Niezgoda, Sandeep Gopalakrishnan, Keke Chen, Zeyun Yu,
- Abstract summary: We have created a DFUTissue dataset for the research community to evaluate wound tissue segmentation algorithms.
The dataset contains 110 images with tissues labeled by wound experts and 600 unlabeled images.
Due to the limited amount of annotated data, our framework consists of both supervised learning (SL) and semi-supervised learning (SSL) phases.
- Score: 5.397013836968946
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Identifying individual tissues, so-called tissue segmentation, in diabetic foot ulcer (DFU) images is a challenging task and little work has been published, largely due to the limited availability of a clinical image dataset. To address this gap, we have created a DFUTissue dataset for the research community to evaluate wound tissue segmentation algorithms. The dataset contains 110 images with tissues labeled by wound experts and 600 unlabeled images. Additionally, we conducted a pilot study on segmenting wound characteristics including fibrin, granulation, and callus using deep learning. Due to the limited amount of annotated data, our framework consists of both supervised learning (SL) and semi-supervised learning (SSL) phases. In the SL phase, we propose a hybrid model featuring a Mix Transformer (MiT-b3) in the encoder and a CNN in the decoder, enhanced by the integration of a parallel spatial and channel squeeze-and-excitation (P-scSE) module known for its efficacy in improving boundary accuracy. The SSL phase employs a pseudo-labeling-based approach, iteratively identifying and incorporating valuable unlabeled images to enhance overall segmentation performance. Comparative evaluations with state-of-the-art methods are conducted for both SL and SSL phases. The SL achieves a Dice Similarity Coefficient (DSC) of 84.89%, which has been improved to 87.64% in the SSL phase. Furthermore, the results are benchmarked against two widely used SSL approaches: Generative Adversarial Networks and Cross-Consistency Training. Additionally, our hybrid model outperforms the state-of-the-art methods with a 92.99% DSC in performing binary segmentation of DFU wound areas when tested on the Chronic Wound dataset. Codes and data are available at https://github.com/uwm-bigdata/DFUTissueSegNet.
Related papers
- Cross Prompting Consistency with Segment Anything Model for Semi-supervised Medical Image Segmentation [44.54301473673582]
Semi-supervised learning (SSL) has achieved notable progress in medical image segmentation.
Recent developments in visual foundation models, such as the Segment Anything Model (SAM), have demonstrated remarkable adaptability.
We propose a cross-prompting consistency method with segment anything model (CPC-SAM) for semi-supervised medical image segmentation.
arXiv Detail & Related papers (2024-07-07T15:43:20Z) - On Pretraining Data Diversity for Self-Supervised Learning [57.91495006862553]
We explore the impact of training with more diverse datasets on the performance of self-supervised learning (SSL) under a fixed computational budget.
Our findings consistently demonstrate that increasing pretraining data diversity enhances SSL performance, albeit only when the distribution distance to the downstream data is minimal.
arXiv Detail & Related papers (2024-03-20T17:59:58Z) - Label-efficient Multi-organ Segmentation Method with Diffusion Model [6.413416851085592]
We present a label-efficient learning approach using a pre-trained diffusion model for multi-organ segmentation tasks in CT images.
Our method achieves competitive multi-organ segmentation performance compared to state-of-the-art methods on the FLARE 2022 dataset.
arXiv Detail & Related papers (2024-02-23T09:25:57Z) - Mediastinal Lymph Node Detection and Segmentation Using Deep Learning [1.7188280334580195]
In clinical practice, computed tomography (CT) and positron emission tomography (PET) imaging detect abnormal lymph nodes (LNs)
Deep convolutional neural networks frequently segment items in medical photographs.
A well-established deep learning technique UNet was modified using bilinear and total generalized variation (TGV) based up strategy to segment and detect mediastinal lymph nodes.
The modified UNet maintains texture discontinuities, selects noisy areas, searches appropriate balance points through backpropagation, and recreates image resolution.
arXiv Detail & Related papers (2022-11-24T02:55:20Z) - Data-Limited Tissue Segmentation using Inpainting-Based Self-Supervised
Learning [3.7931881761831328]
Self-supervised learning (SSL) methods involving pretext tasks have shown promise in overcoming this requirement by first pretraining models using unlabeled data.
We evaluate the efficacy of two SSL methods (inpainting-based pretext tasks of context prediction and context restoration) for CT and MRI image segmentation in label-limited scenarios.
We demonstrate that optimally trained and easy-to-implement SSL segmentation models can outperform classically supervised methods for MRI and CT tissue segmentation in label-limited scenarios.
arXiv Detail & Related papers (2022-10-14T16:34:05Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - Collaborative Intelligence Orchestration: Inconsistency-Based Fusion of
Semi-Supervised Learning and Active Learning [60.26659373318915]
Active learning (AL) and semi-supervised learning (SSL) are two effective, but often isolated, means to alleviate the data-hungry problem.
We propose an innovative Inconsistency-based virtual aDvErial algorithm to further investigate SSL-AL's potential superiority.
Two real-world case studies visualize the practical industrial value of applying and deploying the proposed data sampling algorithm.
arXiv Detail & Related papers (2022-06-07T13:28:43Z) - Medical Instrument Segmentation in 3D US by Hybrid Constrained
Semi-Supervised Learning [62.13520959168732]
We propose a semi-supervised learning framework for instrument segmentation in 3D US.
To achieve the SSL learning, a Dual-UNet is proposed to segment the instrument.
Our proposed method achieves Dice score of about 68.6%-69.1% and the inference time of about 1 sec. per volume.
arXiv Detail & Related papers (2021-07-30T07:59:45Z) - Self-Supervised Learning of Graph Neural Networks: A Unified Review [50.71341657322391]
Self-supervised learning is emerging as a new paradigm for making use of large amounts of unlabeled samples.
We provide a unified review of different ways of training graph neural networks (GNNs) using SSL.
Our treatment of SSL methods for GNNs sheds light on the similarities and differences of various methods, setting the stage for developing new methods and algorithms.
arXiv Detail & Related papers (2021-02-22T03:43:45Z) - Quality-aware semi-supervised learning for CMR segmentation [2.9928692313705505]
One of the challenges in developing deep learning algorithms for medical image segmentation is the scarcity of training data.
We propose a novel scheme that uses QC of the downstream task to identify high quality outputs of CMR segmentation networks.
In essence, this provides quality-aware augmentation of training data in a variant of SSL for segmentation networks.
arXiv Detail & Related papers (2020-09-01T17:18:22Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
Supervised learning paradigms are often limited by the amount of labeled data that is available.
This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG)
By extracting information from unlabeled data, it might be possible to reach competitive performance with deep neural networks.
arXiv Detail & Related papers (2020-07-31T14:34:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.