Mediastinal Lymph Node Detection and Segmentation Using Deep Learning
- URL: http://arxiv.org/abs/2212.11956v1
- Date: Thu, 24 Nov 2022 02:55:20 GMT
- Title: Mediastinal Lymph Node Detection and Segmentation Using Deep Learning
- Authors: Al-Akhir Nayan, Boonserm Kijsirikul, Yuji Iwahori
- Abstract summary: In clinical practice, computed tomography (CT) and positron emission tomography (PET) imaging detect abnormal lymph nodes (LNs)
Deep convolutional neural networks frequently segment items in medical photographs.
A well-established deep learning technique UNet was modified using bilinear and total generalized variation (TGV) based up strategy to segment and detect mediastinal lymph nodes.
The modified UNet maintains texture discontinuities, selects noisy areas, searches appropriate balance points through backpropagation, and recreates image resolution.
- Score: 1.7188280334580195
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automatic lymph node (LN) segmentation and detection for cancer staging are
critical. In clinical practice, computed tomography (CT) and positron emission
tomography (PET) imaging detect abnormal LNs. Despite its low contrast and
variety in nodal size and form, LN segmentation remains a challenging task.
Deep convolutional neural networks frequently segment items in medical
photographs. Most state-of-the-art techniques destroy image's resolution
through pooling and convolution. As a result, the models provide unsatisfactory
results. Keeping the issues in mind, a well-established deep learning technique
UNet was modified using bilinear interpolation and total generalized variation
(TGV) based upsampling strategy to segment and detect mediastinal lymph nodes.
The modified UNet maintains texture discontinuities, selects noisy areas,
searches appropriate balance points through backpropagation, and recreates
image resolution. Collecting CT image data from TCIA, 5-patients, and ELCAP
public dataset, a dataset was prepared with the help of experienced medical
experts. The UNet was trained using those datasets, and three different data
combinations were utilized for testing. Utilizing the proposed approach, the
model achieved 94.8% accuracy, 91.9% Jaccard, 94.1% recall, and 93.1% precision
on COMBO_3. The performance was measured on different datasets and compared
with state-of-the-art approaches. The UNet++ model with hybridized strategy
performed better than others.
Related papers
- WATUNet: A Deep Neural Network for Segmentation of Volumetric Sweep
Imaging Ultrasound [1.2903292694072621]
Volume sweep imaging (VSI) is an innovative approach that enables untrained operators to capture quality ultrasound images.
We present a novel segmentation model known as Wavelet_Attention_UNet (WATUNet)
In this model, we incorporate wavelet gates (WGs) and attention gates (AGs) between the encoder and decoder instead of a simple connection to overcome the limitations mentioned.
arXiv Detail & Related papers (2023-11-17T20:32:37Z) - A Two-Stage Generative Model with CycleGAN and Joint Diffusion for
MRI-based Brain Tumor Detection [41.454028276986946]
We propose a novel framework Two-Stage Generative Model (TSGM) to improve brain tumor detection and segmentation.
CycleGAN is trained on unpaired data to generate abnormal images from healthy images as data prior.
VE-JP is implemented to reconstruct healthy images using synthetic paired abnormal images as a guide.
arXiv Detail & Related papers (2023-11-06T12:58:26Z) - HGT: A Hierarchical GCN-Based Transformer for Multimodal Periprosthetic
Joint Infection Diagnosis Using CT Images and Text [0.0]
Prosthetic Joint Infection (PJI) is a prevalent and severe complication.
Currently, a unified diagnostic standard incorporating both computed tomography (CT) images and numerical text data for PJI remains unestablished.
This study introduces a diagnostic method, HGT, based on deep learning and multimodal techniques.
arXiv Detail & Related papers (2023-05-29T11:25:57Z) - Acute ischemic stroke lesion segmentation in non-contrast CT images
using 3D convolutional neural networks [0.0]
We propose an automatic algorithm aimed at volumetric segmentation of acute ischemic stroke lesion in non-contrast computed tomography brain 3D images.
Our deep-learning approach is based on the popular 3D U-Net convolutional neural network architecture.
arXiv Detail & Related papers (2023-01-17T10:39:39Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Weaving Attention U-net: A Novel Hybrid CNN and Attention-based Method
for Organs-at-risk Segmentation in Head and Neck CT Images [11.403827695550111]
We develop a novel hybrid deep learning approach, combining convolutional neural networks (CNNs) and the self-attention mechanism.
We show that the proposed method generated contours that closely resemble the ground truth for ten organs-at-risk (OARs)
Our results of the new Weaving Attention U-net demonstrate superior or similar performance on the segmentation of head and neck CT images.
arXiv Detail & Related papers (2021-07-10T14:27:46Z) - Automatic size and pose homogenization with spatial transformer network
to improve and accelerate pediatric segmentation [51.916106055115755]
We propose a new CNN architecture that is pose and scale invariant thanks to the use of Spatial Transformer Network (STN)
Our architecture is composed of three sequential modules that are estimated together during training.
We test the proposed method in kidney and renal tumor segmentation on abdominal pediatric CT scanners.
arXiv Detail & Related papers (2021-07-06T14:50:03Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.