論文の概要: Harvesting Events from Multiple Sources: Towards a Cross-Document Event Extraction Paradigm
- arxiv url: http://arxiv.org/abs/2406.16021v1
- Date: Sun, 23 Jun 2024 06:01:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 19:23:47.242879
- Title: Harvesting Events from Multiple Sources: Towards a Cross-Document Event Extraction Paradigm
- Title(参考訳): 複数のソースからのイベントのハーベスティング:クロスドキュメントイベント抽出パラダイムを目指して
- Authors: Qiang Gao, Zixiang Meng, Bobo Li, Jun Zhou, Fei Li, Chong Teng, Donghong Ji,
- Abstract要約: 本稿では,複数の文書からイベント情報を統合し,イベントに関する総合的な視点を提供するために,クロスドキュメントイベント抽出(CDEE)の課題を提案する。
我々は,20,059の文書と37,688の言及レベルのイベントを含む,クロスドキュメントイベント抽出データセット(CLES)を構築した。
当社のCDEEパイプラインは,エンドツーエンドのクロスドキュメントイベント抽出において,約72%のF1を実現しています。
- 参考スコア(独自算出の注目度): 33.737981167605575
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Document-level event extraction aims to extract structured event information from unstructured text. However, a single document often contains limited event information and the roles of different event arguments may be biased due to the influence of the information source. This paper addresses the limitations of traditional document-level event extraction by proposing the task of cross-document event extraction (CDEE) to integrate event information from multiple documents and provide a comprehensive perspective on events. We construct a novel cross-document event extraction dataset, namely CLES, which contains 20,059 documents and 37,688 mention-level events, where over 70% of them are cross-document. To build a benchmark, we propose a CDEE pipeline that includes 5 steps, namely event extraction, coreference resolution, entity normalization, role normalization and entity-role resolution. Our CDEE pipeline achieves about 72% F1 in end-to-end cross-document event extraction, suggesting the challenge of this task. Our work builds a new line of information extraction research and will attract new research attention.
- Abstract(参考訳): 文書レベルのイベント抽出は、構造化されていないテキストから構造化されたイベント情報を抽出することを目的としている。
しかし、単一の文書は、しばしば限られたイベント情報を含み、異なるイベント引数の役割は、情報ソースの影響によりバイアスを受けることがある。
本稿では,複数の文書からイベント情報を統合し,イベントに対する包括的視点を提供するクロスドキュメントイベント抽出(CDEE)の課題を提案することによって,従来の文書レベルのイベント抽出の限界に対処する。
20,059件の文書と37,688件の言及レベルのイベントを含むクロスドキュメントイベント抽出データセットを構築し,そのうち70%以上がクロスドキュメントである。
ベンチマークを構築するために、イベント抽出、コア参照解決、エンティティ正規化、ロール正規化、エンティティロール解決の5つのステップを含むCDEEパイプラインを提案する。
当社のCDEEパイプラインは,エンドツーエンドのクロスドキュメントイベント抽出において,約72%のF1を実現しています。
我々の研究は情報抽出研究の新たなラインを構築し、新たな研究の注目を惹きつける。
関連論文リスト
- Cross-Document Event-Keyed Summarization [35.957271217461525]
イベントキー要約(EKS)をクロスドキュメント設定(CDEKS)に拡張する。
本稿では,文書間議論抽出のためのFAMUSデータセットのエキスパートアノテーションに基づいて,CDEKSのための高品質なデータセットSEAMUSを紹介する。
本報告では,SEAMUSのベースラインについて,小型モデル,微調整モデル,ゼロおよび少数ショット誘導LDM,詳細な改善,人体評価などについて述べる。
論文 参考訳(メタデータ) (2024-10-18T18:09:45Z) - Grounding Partially-Defined Events in Multimodal Data [61.0063273919745]
部分定義イベントに対するマルチモーダル定式化を導入し、これらのイベントの抽出を3段階スパン検索タスクとしてキャストする。
このタスクのベンチマークであるMultiVENT-Gを提案し,22.8Kのラベル付きイベント中心エンティティを含む,14.5時間の高密度アノテーション付き現在のイベントビデオと1,168のテキストドキュメントからなる。
結果は、イベント理解の抽象的な課題を示し、イベント中心のビデオ言語システムにおける約束を実証する。
論文 参考訳(メタデータ) (2024-10-07T17:59:48Z) - Event GDR: Event-Centric Generative Document Retrieval [37.53593254200252]
イベント中心の生成文書検索モデルであるEvent GDRを提案する。
我々は、文書の包括性と内的内容の相関を保証するために、文書のモデル化にイベントと関係を用いる。
識別子構築では、イベントを適切に定義されたイベント分類にマッピングし、明示的な意味構造を持つ識別子を構築する。
論文 参考訳(メタデータ) (2024-05-11T02:55:11Z) - FAMuS: Frames Across Multiple Sources [74.03795560933612]
FAMuSはウィキペディアの節集の新たなコーパスで、あるイベントにエンフレポートし、同じイベントのための基礎となるジャンルディバース(非ウィキペディア)のemphsource記事と組み合わせている。
FAMuSによって実現された2つの重要な事象理解タスクについて報告する。
論文 参考訳(メタデータ) (2023-11-09T18:57:39Z) - MEE: A Novel Multilingual Event Extraction Dataset [62.80569691825534]
Event extractは、イベント参照とその引数をテキストから認識することを目的としている。
モデルトレーニングと評価のための高品質な多言語EEデータセットの欠如が主な障害となっている。
本稿では,8言語で50万以上のイベントを参照するアノテーションを提供する新しい多言語イベント抽出データセット(EE)を提案する。
論文 参考訳(メタデータ) (2022-11-11T02:01:41Z) - Joint Multimedia Event Extraction from Video and Article [51.159034070824056]
本稿では,ビデオ記事やテキスト記事からイベントを共同抽出する手法を提案する。
まず,自己教師型マルチモーダルイベントコアモデルを提案する。
第2に、ビデオとテキストの両方から構造化イベント情報を共同で抽出する、最初のマルチモーダルトランスフォーマーを導入する。
論文 参考訳(メタデータ) (2021-09-27T03:22:12Z) - Cross-document Event Identity via Dense Annotation [9.163142877146512]
我々は、異なる文書からテキストイベントの同一性を研究する。
本稿では,クロスドキュメント・イベント・コアのための高密度アノテーション手法を提案する。
クロスドキュメントイベントコアのためのオープンアクセスデータセットを提案する。
論文 参考訳(メタデータ) (2021-09-14T03:57:58Z) - COfEE: A Comprehensive Ontology for Event Extraction from text, with an
online annotation tool [3.8995911009078816]
イベント抽出(EE)は、特定のインシデントとそのアクターに関する情報をテキストから導き出そうとする。
EEは知識ベースの構築、情報検索、要約、オンライン監視システムなど、多くの領域で有用である。
COfEEは、環境問題、サイバースペース、犯罪活動、自然災害に関連する新しいカテゴリを含む2つの階層レベル(イベントタイプとイベントサブタイプ)から構成されている。
論文 参考訳(メタデータ) (2021-07-21T19:43:22Z) - Document-level Event Extraction with Efficient End-to-end Learning of
Cross-event Dependencies [37.96254956540803]
本稿では,構造化予測アルゴリズムであるDeep Value Networks (DVN) を利用したエンドツーエンドモデルを提案する。
提案手法はACE05上でのCRFモデルに匹敵する性能を達成し,計算効率は極めて高い。
論文 参考訳(メタデータ) (2020-10-24T05:28:16Z) - Detecting Ongoing Events Using Contextual Word and Sentence Embeddings [110.83289076967895]
本稿では,OED(Ongoing Event Detection)タスクを紹介する。
目的は、歴史、未来、仮説、あるいは新しいものでも現在のものでもない他の形式や出来事に対してのみ、進行中のイベントの言及を検出することである。
構造化されていないテキストから進行中のイベントに関する構造化情報を抽出する必要があるアプリケーションは、OEDシステムを利用することができる。
論文 参考訳(メタデータ) (2020-07-02T20:44:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。