論文の概要: Combine and Conquer: A Meta-Analysis on Data Shift and Out-of-Distribution Detection
- arxiv url: http://arxiv.org/abs/2406.16045v1
- Date: Sun, 23 Jun 2024 08:16:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 19:13:57.682102
- Title: Combine and Conquer: A Meta-Analysis on Data Shift and Out-of-Distribution Detection
- Title(参考訳): Combine and Conquer: データシフトとアウト・オブ・ディストリビューション検出のメタ分析
- Authors: Eduardo Dadalto, Florence Alberge, Pierre Duhamel, Pablo Piantanida,
- Abstract要約: 本稿では,アウト・オブ・ディストリビューション(OOD)検出スコアをシームレスに組み合わせるための普遍的アプローチを提案する。
我々のフレームワークは、検出スコアにおける将来の発展にとって容易であり、この文脈で意思決定境界を結合する最初の手段である。
- 参考スコア(独自算出の注目度): 30.377446496559635
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces a universal approach to seamlessly combine out-of-distribution (OOD) detection scores. These scores encompass a wide range of techniques that leverage the self-confidence of deep learning models and the anomalous behavior of features in the latent space. Not surprisingly, combining such a varied population using simple statistics proves inadequate. To overcome this challenge, we propose a quantile normalization to map these scores into p-values, effectively framing the problem into a multi-variate hypothesis test. Then, we combine these tests using established meta-analysis tools, resulting in a more effective detector with consolidated decision boundaries. Furthermore, we create a probabilistic interpretable criterion by mapping the final statistics into a distribution with known parameters. Through empirical investigation, we explore different types of shifts, each exerting varying degrees of impact on data. Our results demonstrate that our approach significantly improves overall robustness and performance across diverse OOD detection scenarios. Notably, our framework is easily extensible for future developments in detection scores and stands as the first to combine decision boundaries in this context. The code and artifacts associated with this work are publicly available\footnote{\url{https://github.com/edadaltocg/detectors}}.
- Abstract(参考訳): 本稿では,アウト・オブ・ディストリビューション(OOD)検出スコアをシームレスに組み合わせるための普遍的アプローチを提案する。
これらのスコアは、ディープラーニングモデルの自己自信と潜在空間における特徴の異常な振る舞いを活用する幅広い技術を含んでいる。
当然のことながら、単純な統計を用いてこのような多様な人口を組み合わせると、不十分であることが証明される。
この課題を克服するために、これらのスコアをp-値にマッピングする量子正規化を提案し、この問題を多変量仮説テストに効果的にフレーミングする。
そして、確立されたメタ分析ツールを用いてこれらのテストを組み合わせることにより、より効果的な検出と決定境界の統合を実現した。
さらに、最終的な統計を既知のパラメータを持つ分布にマッピングすることで、確率論的解釈可能な基準を作成する。
実験的な調査を通じて、異なるタイプのシフトを探索し、それぞれがデータに様々な影響を及ぼします。
以上の結果から,本手法は多様なOOD検出シナリオにおける全体的な堅牢性と性能を著しく向上することが示された。
特に,我々のフレームワークは,検出スコアの今後の発展に対して容易に拡張可能であり,この文脈における決定境界を最初に組み合わせた存在である。
この作業に関連するコードとアーティファクトは、公開されている。footnote{\url{https://github.com/edadaltocg/detectors}}。
関連論文リスト
- Uncertainty Quantification via Hölder Divergence for Multi-View Representation Learning [18.419742575630217]
本稿では,H"older Divergence (HD)に基づく新しいアルゴリズムを導入し,多視点学習の信頼性を高める。
デンプスター・シェーファー理論を通じて、異なるモダリティからの不確実性の統合により、包括的な結果が生成される。
数学的には、HDは実際のデータ分布とモデルの予測分布の間の距離'をよりよく測定できることを証明している。
論文 参考訳(メタデータ) (2024-10-29T04:29:44Z) - Bayesian Joint Additive Factor Models for Multiview Learning [7.254731344123118]
マルチオミクスデータが収集され、臨床結果と相関する精度医学の文脈でモチベーション応用が生じる。
本稿では,共有およびビュー固有のコンポーネントを考慮に入れた,構造化された付加的設計を伴うJAFAR(Joint Additive Factor regression model)を提案する。
免疫,メタボローム,プロテオームデータから得られた時間とラベルの発症の予測は,最先端の競合相手に対するパフォーマンス向上を示す。
論文 参考訳(メタデータ) (2024-06-02T15:35:45Z) - Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
不均衡データセットは、様々な現実世界のアプリケーションで一般的に見られ、分類器の訓練において重要な課題が提示されている。
マイノリティクラスとマイノリティクラスの両方のデータサンプルを混合することにより、反復的に合成サンプルを生成することを提案する。
提案するフレームワークの有効性を,7つの公開ベンチマークデータセットを用いて広範な実験により実証する。
論文 参考訳(メタデータ) (2023-08-28T18:48:34Z) - On the Universal Adversarial Perturbations for Efficient Data-free
Adversarial Detection [55.73320979733527]
本稿では,UAPに対して正常サンプルと逆サンプルの異なる応答を誘導する,データに依存しない逆検出フレームワークを提案する。
実験結果から,本手法は様々なテキスト分類タスクにおいて,競合検出性能を実現することが示された。
論文 参考訳(メタデータ) (2023-06-27T02:54:07Z) - Detecting Concept Drift in the Presence of Sparsity -- A Case Study of
Automated Change Risk Assessment System [0.8021979227281782]
文学におけるテクスティットパリシティ(textitsparsity)と呼ばれる欠落値は、多くの実世界のデータセットの共通の特徴である。
本研究では,異なる種類の疎性に対する様々な統計およびMLに基づくデータ計算手法の欠落した値のパターンについて検討する。
次に、異なるメトリクスに基づいて、欠落した値を持つデータセットを与えられた最良のコンセプトドリフト検出器を選択する。
論文 参考訳(メタデータ) (2022-07-27T04:27:49Z) - Holistic Approach to Measure Sample-level Adversarial Vulnerability and
its Utility in Building Trustworthy Systems [17.707594255626216]
敵対的攻撃は、知覚不能な雑音を伴うイメージを摂動させ、誤ったモデル予測をもたらす。
本稿では,異なる視点を組み合わせることで,サンプルの敵対的脆弱性を定量化するための総合的アプローチを提案する。
サンプルレベルで確実に敵の脆弱性を推定することにより、信頼できるシステムを開発できることを実証する。
論文 参考訳(メタデータ) (2022-05-05T12:36:17Z) - Energy-bounded Learning for Robust Models of Code [16.592638312365164]
プログラミングでは、コード表現の学習には、コード分類、コード検索、コメント生成、バグ予測など、さまざまなアプリケーションがある。
本稿では,ソースコードモデルのトレーニングプロセスにこれらのアウト・オブ・ディストリビューション・サンプルを組み込むため,エネルギー境界学習目標関数を用いて,イン・ディストリビューション・サンプルにより高いスコアを割り当て,アウト・オブ・ディストリビューション・サンプルに低いスコアを割り当てることを提案する。
論文 参考訳(メタデータ) (2021-12-20T06:28:56Z) - Meta Learning Low Rank Covariance Factors for Energy-Based Deterministic
Uncertainty [58.144520501201995]
ニューラルネットワーク層のBi-Lipschitz正規化は、各レイヤの特徴空間におけるデータインスタンス間の相対距離を保存する。
注意セットエンコーダを用いて,タスク固有の共分散行列を効率的に構築するために,対角的,対角的,低ランクな要素のメタ学習を提案する。
また,最終的な予測分布を達成するために,スケールしたエネルギーを利用する推論手法を提案する。
論文 参考訳(メタデータ) (2021-10-12T22:04:19Z) - Probabilistic Ranking-Aware Ensembles for Enhanced Object Detections [50.096540945099704]
本稿では,検知器から箱を囲むことの信頼性を向上するPRAE(Probabilistic Ranking Aware Ensemble)という新しいアンサンブルを提案する。
また,異なる数の箱を扱う必要性によって生じる信頼の不均衡問題に対処するためのbanditアプローチも導入する。
論文 参考訳(メタデータ) (2021-05-07T09:37:06Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
補間分類器間のテストエラーの完全な分布を正確に計算する手法を開発した。
テストエラーは、最悪の補間モデルのテストエラーから大きく逸脱する、小さな典型的な$varepsilon*$に集中する傾向にある。
以上の結果から,統計的学習理論における通常の解析手法は,実際に観測された優れた一般化性能を捉えるのに十分な粒度にはならない可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-22T21:12:31Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
数ショットのメトリックベースのアプローチのための一般的なトランスダクティブ推論手法は、最も確実なクエリ例の平均で、各クラスのプロトタイプを更新することである。
本稿では,各クエリの信頼度をメタラーニングして,ラベルのないクエリに最適な重みを割り当てる手法を提案する。
4つのベンチマークデータセットに対してメタ学習の信頼度で、少数ショットの学習モデルを検証した。
論文 参考訳(メタデータ) (2020-02-27T10:22:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。