Intensity Confusion Matters: An Intensity-Distance Guided Loss for Bronchus Segmentation
- URL: http://arxiv.org/abs/2406.16150v1
- Date: Sun, 23 Jun 2024 16:09:21 GMT
- Title: Intensity Confusion Matters: An Intensity-Distance Guided Loss for Bronchus Segmentation
- Authors: Haifan Gong, Wenhao Huang, Huan Zhang, Yu Wang, Xiang Wan, Hong Shen, Guanbin Li, Haofeng Li,
- Abstract summary: Intensity values of certain background voxels approach those of the foreground voxels within bronchi.
We introduce a novel Intensity-Distance Guided loss function, which assigns adaptive weights to different image voxels for mining hard samples that cause the intensity confusion.
- Score: 68.50007997260464
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatic segmentation of the bronchial tree from CT imaging is important, as it provides structural information for disease diagnosis. Despite the merits of previous automatic bronchus segmentation methods, they have paied less attention to the issue we term as \textit{Intensity Confusion}, wherein the intensity values of certain background voxels approach those of the foreground voxels within bronchi. Conversely, the intensity values of some foreground voxels are nearly identical to those of background voxels. This proximity in intensity values introduces significant challenges to neural network methodologies. To address the issue, we introduce a novel Intensity-Distance Guided loss function, which assigns adaptive weights to different image voxels for mining hard samples that cause the intensity confusion. The proposed loss estimates the voxel-level hardness of samples, on the basis of the following intensity and distance priors. We regard a voxel as a hard sample if it is in: (1) the background and has an intensity value close to the bronchus region; (2) the bronchus region and is of higher intensity than most voxels inside the bronchus; (3) the background region and at a short distance from the bronchus. Extensive experiments not only show the superiority of our method compared with the state-of-the-art methods, but also verify that tackling the intensity confusion issue helps to significantly improve bronchus segmentation. Project page: https://github.com/lhaof/ICM.
Related papers
- Improved Decoy-state and Flag-state Squashing Methods [0.0]
We present an improved analysis for decoy-state methods.
Our primary focus is improving the shortcomings observed in current decoy-state methods.
We extend decoy-state techniques to encompass scenarios where intensities vary depending on the signal state.
arXiv Detail & Related papers (2024-05-08T14:09:59Z) - An Efficient and Robust Method for Chest X-Ray Rib Suppression that
Improves Pulmonary Abnormality Diagnosis [0.49998148477760956]
Suppression of thoracic bone shadows on chest X-rays (CXRs) has been indicated to improve the diagnosis of pulmonary disease.
Previous approaches can be categorized as unsupervised physical and supervised deep learning models.
We propose a generalizable yet efficient workflow of two stages: (1) training pairs generation with GT bone shadows eliminated in minimization by a physical model in spatially transformed gradient fields.
(2) fully supervised image denoising network training on stage-one datasets for fast rib removal on incoming CXRs.
arXiv Detail & Related papers (2023-02-19T23:47:02Z) - Fuzzy Attention Neural Network to Tackle Discontinuity in Airway
Segmentation [67.19443246236048]
Airway segmentation is crucial for the examination, diagnosis, and prognosis of lung diseases.
Some small-sized airway branches (e.g., bronchus and terminaloles) significantly aggravate the difficulty of automatic segmentation.
This paper presents an efficient method for airway segmentation, comprising a novel fuzzy attention neural network and a comprehensive loss function.
arXiv Detail & Related papers (2022-09-05T16:38:13Z) - Weakly Supervised Airway Orifice Segmentation in Video Bronchoscopy [0.0]
This paper addresses the automatic segmentation of bronchial orifices in bronchoscopy videos.
Deep learning-based approaches to this task are currently hampered due to the lack of readily-available ground truth segmentation data.
We present a data-driven pipeline consisting of a k-means followed by a compact marker-based watershed algorithm.
arXiv Detail & Related papers (2022-08-24T12:18:25Z) - BronchusNet: Region and Structure Prior Embedded Representation Learning
for Bronchus Segmentation and Classification [53.53758990624962]
We propose a region and structure prior embedded framework named BronchusNet to achieve accurate bronchial analysis.
For bronchus segmentation, we propose an adaptive hard region-aware UNet that incorporates multi-level prior guidance of hard pixel-wise samples.
For the classification of bronchial branches, we propose a hybrid point-voxel graph learning module.
arXiv Detail & Related papers (2022-05-14T02:32:33Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
Early and accurate severity assessment of Coronavirus disease 2019 (COVID-19) based on computed tomography (CT) images offers a great help to the estimation of intensive care unit event.
To augment the labeled data and improve the generalization ability of the classification model, it is necessary to aggregate data from multiple sites.
This task faces several challenges including class imbalance between mild and severe infections, domain distribution discrepancy between sites, and presence of heterogeneous features.
arXiv Detail & Related papers (2021-09-08T07:56:51Z) - Generalizing Face Forgery Detection with High-frequency Features [63.33397573649408]
Current CNN-based detectors tend to overfit to method-specific color textures and thus fail to generalize.
We propose to utilize the high-frequency noises for face forgery detection.
The first is the multi-scale high-frequency feature extraction module that extracts high-frequency noises at multiple scales.
The second is the residual-guided spatial attention module that guides the low-level RGB feature extractor to concentrate more on forgery traces from a new perspective.
arXiv Detail & Related papers (2021-03-23T08:19:21Z) - Contralaterally Enhanced Networks for Thoracic Disease Detection [120.60868136876599]
There exist many similar structures in the left and right parts of the chest, such as ribs, lung fields and bronchial tubes.
This kind of similarities can be used to identify diseases in chest X-rays, according to the experience of broad-certificated radiologists.
We propose a deep end-to-end module to exploit the contralateral context information for enhancing feature representations of disease proposals.
arXiv Detail & Related papers (2020-10-09T10:15:26Z) - Robust Deep Learning Framework For Predicting Respiratory Anomalies and
Diseases [26.786743524562322]
This paper presents a robust deep learning framework developed to detect respiratory diseases from recordings of respiratory sounds.
A back-end deep learning model classifies the features into classes of respiratory disease or anomaly.
Experiments, conducted over the ICBHI benchmark dataset of respiratory sounds, evaluate the ability of the framework to classify sounds.
arXiv Detail & Related papers (2020-01-21T15:26:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.