An Efficient and Robust Method for Chest X-Ray Rib Suppression that
Improves Pulmonary Abnormality Diagnosis
- URL: http://arxiv.org/abs/2302.09696v1
- Date: Sun, 19 Feb 2023 23:47:02 GMT
- Title: An Efficient and Robust Method for Chest X-Ray Rib Suppression that
Improves Pulmonary Abnormality Diagnosis
- Authors: Di Xu, Qifan Xu, Kevin Nhieu, Dan Ruan and Ke Sheng
- Abstract summary: Suppression of thoracic bone shadows on chest X-rays (CXRs) has been indicated to improve the diagnosis of pulmonary disease.
Previous approaches can be categorized as unsupervised physical and supervised deep learning models.
We propose a generalizable yet efficient workflow of two stages: (1) training pairs generation with GT bone shadows eliminated in minimization by a physical model in spatially transformed gradient fields.
(2) fully supervised image denoising network training on stage-one datasets for fast rib removal on incoming CXRs.
- Score: 0.49998148477760956
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Suppression of thoracic bone shadows on chest X-rays (CXRs) has been
indicated to improve the diagnosis of pulmonary disease. Previous approaches
can be categorized as unsupervised physical and supervised deep learning
models. Nevertheless, with physical models able to preserve morphological
details but at the cost of extremely long processing time, existing DL methods
face challenges of gathering sufficient/qualitative ground truth (GT) for
robust training, thus leading to failure in maintaining clinically acceptable
false positive rates. We hereby propose a generalizable yet efficient workflow
of two stages: (1) training pairs generation with GT bone shadows eliminated in
by a physical model in spatially transformed gradient fields. (2) fully
supervised image denoising network training on stage-one datasets for fast rib
removal on incoming CXRs. For step two, we designed a densely connected network
called SADXNet, combined with peak signal to noise ratio and multi-scale
structure similarity index measure objective minimization to suppress bony
structures. The SADXNet organizes spatial filters in U shape (e.g., X=7;
filters = 16, 64, 256, 512, 256, 64, 16) and preserves the feature map
dimension throughout the network flow. Visually, SADXNet can suppress the rib
edge and that near the lung wall/vertebra without jeopardizing the
vessel/abnormality conspicuity. Quantitively, it achieves RMSE of ~0 during
testing with one prediction taking <1s. Downstream tasks including lung nodule
detection as well as common lung disease classification and localization are
used to evaluate our proposed rib suppression mechanism. We observed 3.23% and
6.62% area under the curve (AUC) increase as well as 203 and 385 absolute false
positive decrease for lung nodule detection and common lung disease
localization, separately.
Related papers
- Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Debiasing pipeline improves deep learning model generalization for X-ray
based lung nodule detection [11.228544549618068]
Lung cancer is the leading cause of cancer death worldwide and a good prognosis depends on early diagnosis.
We show that an image pre-processing pipeline that homogenizes and debiases chest X-ray images can improve both internal classification and external generalization.
An evolutionary pruning mechanism is used to train a nodule detection deep learning model on the most informative images from a publicly available lung nodule X-ray dataset.
arXiv Detail & Related papers (2022-01-24T10:08:07Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
We adopted an approach based on using an ensemble of deep convolutionalneural networks for segmentation of lung CT scans.
Using our models we are able to segment the lesions, evaluatepatients dynamics, estimate relative volume of lungs affected by lesions and evaluate the lung damage stage.
arXiv Detail & Related papers (2021-05-25T12:06:55Z) - Development of a Multi-Task Learning V-Net for Pulmonary Lobar
Segmentation on Computed Tomography and Application to Diseased Lungs [0.19573380763700707]
Diseased lung regions often produce high-density zones on CT images, limiting an algorithm's execution to specify damaged lobes.
This impact motivated developing an improved machine learning method to segment lung lobes.
The approach can be readily adopted in the clinical setting as a robust tool for radiologists.
arXiv Detail & Related papers (2021-05-11T17:10:25Z) - Quantification of pulmonary involvement in COVID-19 pneumonia by means
of a cascade oftwo U-nets: training and assessment on multipledatasets using
different annotation criteria [83.83783947027392]
This study aims at exploiting Artificial intelligence (AI) for the identification, segmentation and quantification of COVID-19 pulmonary lesions.
We developed an automated analysis pipeline, the LungQuant system, based on a cascade of two U-nets.
The accuracy in predicting the CT-Severity Score (CT-SS) of the LungQuant system has been also evaluated.
arXiv Detail & Related papers (2021-05-06T10:21:28Z) - A new semi-supervised self-training method for lung cancer prediction [0.28734453162509355]
There are only relatively few methods that simultaneously detect and classify nodules from computed tomography (CT) scans.
This study presents a complete end-to-end scheme to detect and classify lung nodules using the state-of-the-art Self-training with Noisy Student method.
arXiv Detail & Related papers (2020-12-17T09:53:51Z) - Deep LF-Net: Semantic Lung Segmentation from Indian Chest Radiographs
Including Severely Unhealthy Images [5.826056983051642]
A chest radiograph, commonly called chest x-ray (CxR), plays a vital role in the diagnosis of various lung diseases.
Precise lung segmentation is extremely challenging because of variance in the shape of the lung caused by health issues, age, and gender.
The proposed work investigates the use of an efficient deep convolutional neural network for accurate segmentation of lungs from CxR.
arXiv Detail & Related papers (2020-11-19T07:21:02Z) - CT Image Segmentation for Inflamed and Fibrotic Lungs Using a
Multi-Resolution Convolutional Neural Network [6.177921466996229]
The purpose of this study was to develop a fully-automated segmentation algorithm, robust to various density enhancing lung abnormalities.
A polymorphic training approach is proposed, in which both specifically labeled left and right lungs of humans with COPD, and nonspecifically labeled lungs of animals with acute lung injury, were incorporated into training a single neural network.
The resulting network is intended for predicting left and right lung regions in humans with or without diffuse opacification and consolidation.
arXiv Detail & Related papers (2020-10-16T18:25:59Z) - Contralaterally Enhanced Networks for Thoracic Disease Detection [120.60868136876599]
There exist many similar structures in the left and right parts of the chest, such as ribs, lung fields and bronchial tubes.
This kind of similarities can be used to identify diseases in chest X-rays, according to the experience of broad-certificated radiologists.
We propose a deep end-to-end module to exploit the contralateral context information for enhancing feature representations of disease proposals.
arXiv Detail & Related papers (2020-10-09T10:15:26Z) - M3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia
Screening from CT Imaging [85.00066186644466]
We propose a Multi-task Multi-slice Deep Learning System (M3Lung-Sys) for multi-class lung pneumonia screening from CT imaging.
In addition to distinguish COVID-19 from Healthy, H1N1, and CAP cases, our M 3 Lung-Sys also be able to locate the areas of relevant lesions.
arXiv Detail & Related papers (2020-10-07T06:22:24Z) - Predicting COVID-19 Pneumonia Severity on Chest X-ray with Deep Learning [57.00601760750389]
We present a severity score prediction model for COVID-19 pneumonia for frontal chest X-ray images.
Such a tool can gauge severity of COVID-19 lung infections that can be used for escalation or de-escalation of care.
arXiv Detail & Related papers (2020-05-24T23:13:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.