論文の概要: Continuous Output Personality Detection Models via Mixed Strategy Training
- arxiv url: http://arxiv.org/abs/2406.16223v1
- Date: Sun, 23 Jun 2024 21:32:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 18:25:12.055942
- Title: Continuous Output Personality Detection Models via Mixed Strategy Training
- Title(参考訳): 混合戦略学習による連続出力個人性検出モデル
- Authors: Rong Wang, Kun Sun,
- Abstract要約: 本稿では,連続的な出力値を生成する人格検出モデルをトレーニングするための新しいアプローチを提案する。
Redditコメントの広範囲なパーソナリティラベルを含むPANDORAデータセットを活用することで、Big Fiveのパーソナリティ特性を高精度に予測するモデルを開発した。
- 参考スコア(独自算出の注目度): 27.152245569974678
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The traditional personality models only yield binary results. This paper presents a novel approach for training personality detection models that produce continuous output values, using mixed strategies. By leveraging the PANDORA dataset, which includes extensive personality labeling of Reddit comments, we developed models that predict the Big Five personality traits with high accuracy. Our approach involves fine-tuning a RoBERTa-base model with various strategies such as Multi-Layer Perceptron (MLP) integration, and hyperparameter tuning. The results demonstrate that our models significantly outperform traditional binary classification methods, offering precise continuous outputs for personality traits, thus enhancing applications in AI, psychology, human resources, marketing and health care fields.
- Abstract(参考訳): 伝統的なパーソナリティモデルでは、バイナリ結果しか得られない。
本稿では、混合戦略を用いて、連続的な出力値を生成する人格検出モデルを訓練するための新しいアプローチを提案する。
Redditコメントの広範囲なパーソナリティラベルを含むPANDORAデータセットを活用することで、Big Fiveのパーソナリティ特性を高精度に予測するモデルを開発した。
我々のアプローチでは、マルチ層パーセプトロン(MLP)統合やハイパーパラメータチューニングなど、さまざまな戦略でRoBERTaベースモデルを微調整する。
その結果、我々のモデルは従来の二項分類法を著しく上回り、人格特性の正確な連続出力を提供し、それによってAI、心理学、人的資源、マーケティング、医療分野の応用性を高めた。
関連論文リスト
- Controlling the Fidelity and Diversity of Deep Generative Models via Pseudo Density [70.14884528360199]
本稿では, GAN や拡散モデルなどのバイアス深層生成モデルへのアプローチを導入し, 忠実度の向上や多様性の向上を図ったデータ生成手法を提案する。
提案手法では, 擬似密度という, 個人サンプルの新たな測定基準を用いて, トレーニングとデータ生成の分布を操作する。
論文 参考訳(メタデータ) (2024-07-11T16:46:04Z) - Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
EHRPDと呼ばれる新しいEHRデータ生成モデルを提案する。
時間間隔推定を組み込んだ拡散モデルである。
我々は2つの公開データセットで実験を行い、忠実さ、プライバシー、実用性の観点からEPHPDを評価する。
論文 参考訳(メタデータ) (2024-06-20T02:20:23Z) - Has Your Pretrained Model Improved? A Multi-head Posterior Based
Approach [25.927323251675386]
我々は、世界的知識の源として各エンティティに関連するメタ機能を活用し、モデルからエンティティ表現を採用する。
本稿では,これらの表現とメタ機能との整合性を,事前学習モデルの評価指標として用いることを提案する。
提案手法の有効性は,関係データセットを用いたモデル,大規模言語モデル,画像モデルなど,様々な領域で実証されている。
論文 参考訳(メタデータ) (2024-01-02T17:08:26Z) - When Parameter-efficient Tuning Meets General-purpose Vision-language
Models [65.19127815275307]
PETALは、一意のモード近似技術によって達成される全パラメータの0.5%しか必要とせず、トレーニングプロセスに革命をもたらす。
実験の結果,PETALは現状の手法をほとんどのシナリオで上回るだけでなく,完全な微調整モデルよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-12-16T17:13:08Z) - Emotional Reaction Intensity Estimation Based on Multimodal Data [24.353102762289545]
本稿では,感情反応強度(ERI)推定法について紹介する。
発声器が提供するマルチモーダルデータに基づいて,事前学習した異なるモデルを用いて,音響的特徴と視覚的特徴を抽出する。
論文 参考訳(メタデータ) (2023-03-16T09:14:47Z) - An Open-source Benchmark of Deep Learning Models for Audio-visual
Apparent and Self-reported Personality Recognition [10.59440995582639]
パーソナリティは、人間の日常生活や作業行動の多様さを決定づけ、人間の内外的状態を理解するのに不可欠である。
近年,非言語的音声視覚行動に基づいて,対象者の見かけの個性や自己報告の個性を予測するために,多数の自動パーソナリティコンピューティング手法が開発されている。
一貫性のある実験的な設定の標準ベンチマークがないため、これらのパーソナリティコンピューティングモデルの実際の性能を適切に比較することは不可能であり、再現も困難である。
既存の8つのパーソナリティ・コンピューティング・モデルに対して公平かつ一貫した評価を提供するために,最初の再現可能な音声視覚ベンチマーク・フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-17T14:40:04Z) - Pushing on Personality Detection from Verbal Behavior: A Transformer
Meets Text Contours of Psycholinguistic Features [27.799032561722893]
テキストデータから人格特性を予測する上で,2つの大きな改善点を報告する。
精神言語学的特徴のテキスト内分布を学習した,事前学習型トランスフォーマー言語モデルBERTと双方向長短期記憶ネットワークを統合した。
2つのベンチマークデータセット上に構築したモデルの性能を評価する。
論文 参考訳(メタデータ) (2022-04-10T08:08:46Z) - SANSformers: Self-Supervised Forecasting in Electronic Health Records
with Attention-Free Models [48.07469930813923]
本研究は,医療施設への患者訪問数を予測することにより,医療サービスの需要を予測することを目的とする。
SNSformerは、特定の帰納バイアスを設計し、EHRデータの特異な特徴を考慮に入れた、注意のない逐次モデルである。
本研究は, 各種患者集団を対象とした医療利用予測の修正における, 注意力のないモデルと自己指導型事前訓練の有望な可能性について考察した。
論文 参考訳(メタデータ) (2021-08-31T08:23:56Z) - How Faithful is your Synthetic Data? Sample-level Metrics for Evaluating
and Auditing Generative Models [95.8037674226622]
ドメインに依存しない方法で生成モデルの忠実度,多様性,一般化性能を特徴付ける3次元評価指標を提案する。
当社のメトリクスは、精度リコール分析により統計的発散測定を統合し、モデル忠実度と多様性のサンプルおよび分布レベルの診断を可能にします。
論文 参考訳(メタデータ) (2021-02-17T18:25:30Z) - AvgOut: A Simple Output-Probability Measure to Eliminate Dull Responses [97.50616524350123]
機能エンジニアリングなしで、どの発話やトークンが退屈であるかを動的に認識する対話モデルを構築します。
最初のモデルMinAvgOutは、各バッチの出力分布を通して、ダイバーシティスコアを直接最大化する。
第2のモデルであるラベルファインチューニング(LFT)は、多様性スコアによって連続的にスケールされたラベルをソースシーケンスにプリペイドし、多様性レベルを制御する。
3つ目のモデルであるRLは強化学習を採用し、多様性スコアを報奨信号として扱う。
論文 参考訳(メタデータ) (2020-01-15T18:32:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。