Compensate Quantization Errors: Make Weights Hierarchical to Compensate Each Other
- URL: http://arxiv.org/abs/2406.16299v1
- Date: Mon, 24 Jun 2024 03:52:52 GMT
- Title: Compensate Quantization Errors: Make Weights Hierarchical to Compensate Each Other
- Authors: Yifei Gao, Jie Ou, Lei Wang, Yuting Xiao, Zhiyuan Xiang, Ruiting Dai, Jun Cheng,
- Abstract summary: We introduce Learnable Singular value Increment (LSI) as an advanced solution to quantization problems.
LSI uses Singular Value Decomposition to extract singular values of the weights and make them learnable to help weights compensate each other conditioned on activation.
We achieve state-of-the-art performance in diverse quantization settings, no matter in weight-only, weight-activation or extremely low bit scenarios.
- Score: 10.292252814921714
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Emergent Large Language Models (LLMs) use their extraordinary performance and powerful deduction capacity to discern from traditional language models. However, the expenses of computational resources and storage for these LLMs are stunning, quantization then arises as a trending conversation. To address accuracy decay caused by quantization, two streams of works in post-training quantization methods stand out. One uses other weights to compensate existing quantization error, while the other transfers the quantization difficulty to other parts in the model. Combining both merits, we introduce Learnable Singular value Increment (LSI) as an advanced solution. LSI uses Singular Value Decomposition to extract singular values of the weights and make them learnable to help weights compensate each other conditioned on activation. Incorporating LSI with existing techniques, we achieve state-of-the-art performance in diverse quantization settings, no matter in weight-only, weight-activation or extremely low bit scenarios. By unleashing the potential of LSI, efficient finetuning on quantized model is no longer a prohibitive problem.
Related papers
- Advancing Multimodal Large Language Models with Quantization-Aware Scale Learning for Efficient Adaptation [70.22782550540714]
Quantization-aware Scale LeArning method based on multimodal Warmup, termed QSLAW.
We introduce a Quantization-aware Scale LeArning method based on multimodal Warmup, termed QSLAW.
arXiv Detail & Related papers (2024-08-07T12:42:09Z) - LRQ: Optimizing Post-Training Quantization for Large Language Models by Learning Low-Rank Weight-Scaling Matrices [41.17378536966264]
Low-Rank Quantization $-$ is a simple yet effective post-training weight quantization method for large language models.
Thanks to parameter sharing via low-rank structure, LRQ only needs to learn significantly fewer parameters while enabling the individual scaling of weights.
We show the superiority of LRQ over prior LLM PTQ works under (i) $8$-bit weight and per-tensor activation quantization, (ii) $4$-bit weight and $8$-bit per-token activation quantization, and (iii) low-bit weight-only quantization schemes.
arXiv Detail & Related papers (2024-07-16T09:32:07Z) - AWEQ: Post-Training Quantization with Activation-Weight Equalization for
Large Language Models [0.18416014644193066]
AWEQ excels in both ultra-low-bit quantization and 8-bit weight and activation (W8A8) quantization.
We have further refined the equalization method to mitigate quantization bias error, ensuring the robustness of the model.
arXiv Detail & Related papers (2023-11-02T15:18:22Z) - Rethinking Channel Dimensions to Isolate Outliers for Low-bit Weight Quantization of Large Language Models [7.485068491216164]
Large Language Models (LLMs) have recently demonstrated remarkable success across various tasks.
Weight-only quantization can be a promising approach, but sub-4 bit quantization remains a challenge due to large-magnitude activation outliers.
We propose per-IC quantization, a simple yet effective method that creates quantization groups within each input channel.
arXiv Detail & Related papers (2023-09-27T09:48:31Z) - QA-LoRA: Quantization-Aware Low-Rank Adaptation of Large Language Models [85.02796681773447]
We propose a quantization-aware low-rank adaptation (QA-LoRA) algorithm.
The motivation lies in the imbalanced degrees of freedom of quantization and adaptation.
QA-LoRA is easily implemented with a few lines of code.
arXiv Detail & Related papers (2023-09-26T07:22:23Z) - OmniQuant: Omnidirectionally Calibrated Quantization for Large Language Models [57.27101446992148]
Large language models (LLMs) have revolutionized natural language processing tasks.
Recent post-training quantization (PTQ) methods are effective in reducing memory footprint and improving the computational efficiency of LLM.
We introduce an Omnidirectionally calibrated Quantization technique for LLMs, which achieves good performance in diverse quantization settings.
arXiv Detail & Related papers (2023-08-25T02:28:35Z) - NUPES : Non-Uniform Post-Training Quantization via Power Exponent Search [7.971065005161565]
quantization is a technique to convert floating point representations to low bit-width fixed point representations.
We show how to learn new quantized weights over the entire quantized space.
We show the ability of the method to achieve state-of-the-art compression rates in both, data-free and data-driven configurations.
arXiv Detail & Related papers (2023-08-10T14:19:58Z) - Do Emergent Abilities Exist in Quantized Large Language Models: An
Empirical Study [90.34226812493083]
This work aims to investigate the impact of quantization on emphemergent abilities, which are important characteristics that distinguish LLMs from small language models.
Our empirical experiments show that these emergent abilities still exist in 4-bit quantization models, while 2-bit models encounter severe performance degradation.
To improve the performance of low-bit models, we conduct two special experiments: (1) fine-gained impact analysis that studies which components (or substructures) are more sensitive to quantization, and (2) performance compensation through model fine-tuning.
arXiv Detail & Related papers (2023-07-16T15:11:01Z) - AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration [54.692405042065815]
We propose Activation-aware Weight Quantization (AWQ), a hardware-friendly approach for LLM low-bit weight-only quantization.
AWQ protects only 1% salient weights and achieves excellent quantization performance for instruction-tuned LMs and, for the first time, multi-modal LMs.
We also implement TinyChat, an efficient and flexible inference framework tailored for 4-bit on-device LLM/VLMs.
arXiv Detail & Related papers (2023-06-01T17:59:10Z) - PreQuant: A Task-agnostic Quantization Approach for Pre-trained Language
Models [52.09865918265002]
We propose a novel quantize before fine-tuning'' framework, PreQuant.
PreQuant is compatible with various quantization strategies, with outlier-aware fine-tuning incorporated to correct the induced quantization error.
We demonstrate the effectiveness of PreQuant on the GLUE benchmark using BERT, RoBERTa, and T5.
arXiv Detail & Related papers (2023-05-30T08:41:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.