Advancing Multimodal Large Language Models with Quantization-Aware Scale Learning for Efficient Adaptation
- URL: http://arxiv.org/abs/2408.03735v1
- Date: Wed, 7 Aug 2024 12:42:09 GMT
- Title: Advancing Multimodal Large Language Models with Quantization-Aware Scale Learning for Efficient Adaptation
- Authors: Jingjing Xie, Yuxin Zhang, Mingbao Lin, Liujuan Cao, Rongrong Ji,
- Abstract summary: Quantization-aware Scale LeArning method based on multimodal Warmup, termed QSLAW.
We introduce a Quantization-aware Scale LeArning method based on multimodal Warmup, termed QSLAW.
- Score: 70.22782550540714
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents the first study to explore the potential of parameter quantization for multimodal large language models to alleviate the significant resource constraint encountered during vision-language instruction tuning. We introduce a Quantization-aware Scale LeArning method based on multimodal Warmup, termed QSLAW. This method is grounded in two key innovations: (1) The learning of group-wise scale factors for quantized LLM weights to mitigate the quantization error arising from activation outliers and achieve more effective vision-language instruction tuning; (2) The implementation of a multimodal warmup that progressively integrates linguistic and multimodal training samples, thereby preventing overfitting of the quantized model to multimodal data while ensuring stable adaptation of multimodal large language models to downstream vision-language tasks. Extensive experiments demonstrate that models quantized by QSLAW perform on par with, or even surpass, their full-precision counterparts, while facilitating up to 1.4 times reduction in VL tuning time and GPU consumption. Our code is released at https://github.com/xjjxmu/QSLAW.
Related papers
- ADEM-VL: Adaptive and Embedded Fusion for Efficient Vision-Language Tuning [38.26304604660713]
ADEM-VL is an efficient vision-language method that tunes models based on pretrained large language models.
Our framework surpasses existing methods by an average accuracy of 0.77% on ScienceQA dataset.
arXiv Detail & Related papers (2024-10-23T11:31:06Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks.
Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs.
In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs.
arXiv Detail & Related papers (2024-10-18T03:45:19Z) - Optimizing Low-Resource Language Model Training: Comprehensive Analysis of Multi-Epoch, Multi-Lingual, and Two-Stage Approaches [3.809045695573932]
Existing works adopt multi-epoch, multi-lingual, and two-stage training to utilize the limited target language corpus efficiently.
We exhaustively explore training setups for low-resource language LLM, combining these three approaches.
As the amount of target language corpus decreases, the optimal training approach shifts from monolingual single-stage training to multi-lingual two-stage training at a compute budget dependent threshold.
arXiv Detail & Related papers (2024-10-16T07:45:56Z) - EMMA: Efficient Visual Alignment in Multi-Modal LLMs [56.03417732498859]
EMMA is a lightweight cross-modality module designed to efficiently fuse visual and textual encodings.
EMMA boosts performance across multiple tasks by up to 9.3% while significantly improving robustness against hallucinations.
arXiv Detail & Related papers (2024-10-02T23:00:31Z) - Unlocking the Potential of Model Merging for Low-Resource Languages [66.7716891808697]
Adapting large language models to new languages typically involves continual pre-training (CT) followed by supervised fine-tuning (SFT)
We propose model merging as an alternative for low-resource languages, combining models with distinct capabilities into a single model without additional training.
Experiments based on Llama-2-7B demonstrate that model merging effectively endows LLMs for low-resource languages with task-solving abilities, outperforming CT-then-SFT in scenarios with extremely scarce data.
arXiv Detail & Related papers (2024-07-04T15:14:17Z) - VL-Mamba: Exploring State Space Models for Multimodal Learning [22.701028299912398]
In this work, we propose VL-Mamba, a multimodal large language model based on state space models.
Specifically, we first replace the transformer-based backbone language model such as LLama or Vicuna with the pre-trained Mamba language model.
arXiv Detail & Related papers (2024-03-20T13:48:50Z) - When Parameter-efficient Tuning Meets General-purpose Vision-language
Models [65.19127815275307]
PETAL revolutionizes the training process by requiring only 0.5% of the total parameters, achieved through a unique mode approximation technique.
Our experiments reveal that PETAL not only outperforms current state-of-the-art methods in most scenarios but also surpasses full fine-tuning models in effectiveness.
arXiv Detail & Related papers (2023-12-16T17:13:08Z) - Enabling Multimodal Generation on CLIP via Vision-Language Knowledge
Distillation [79.72299298976525]
We propose to augment a vision-language pre-training model with a textual pre-trained language model (PLM) via vision-language knowledge distillation (VLKD)
Experiments show that the resulting model has strong zero-shot performance on multimodal generation tasks, such as open-ended visual question answering and image captioning.
The original textual language understanding and generation ability of the PLM is maintained after VLKD, which makes our model versatile for both multimodal and unimodal tasks.
arXiv Detail & Related papers (2022-03-12T09:33:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.