論文の概要: Exploring Cross-Domain Few-Shot Classification via Frequency-Aware Prompting
- arxiv url: http://arxiv.org/abs/2406.16422v1
- Date: Mon, 24 Jun 2024 08:14:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 15:43:33.461704
- Title: Exploring Cross-Domain Few-Shot Classification via Frequency-Aware Prompting
- Title(参考訳): 周波数対応プロンプティングによるクロスドメインFew-Shot分類の探索
- Authors: Tiange Zhang, Qing Cai, Feng Gao, Lin Qi, Junyu Dong,
- Abstract要約: クロスドメインなFew-Shot Learningはメタラーニングの発展に大きく貢献している。
本稿では,相互に注意を向けた周波数対応プロンプト手法を提案する。
- 参考スコア(独自算出の注目度): 37.721042095518044
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cross-Domain Few-Shot Learning has witnessed great stride with the development of meta-learning. However, most existing methods pay more attention to learning domain-adaptive inductive bias (meta-knowledge) through feature-wise manipulation or task diversity improvement while neglecting the phenomenon that deep networks tend to rely more on high-frequency cues to make the classification decision, which thus degenerates the robustness of learned inductive bias since high-frequency information is vulnerable and easy to be disturbed by noisy information. Hence in this paper, we make one of the first attempts to propose a Frequency-Aware Prompting method with mutual attention for Cross-Domain Few-Shot classification, which can let networks simulate the human visual perception of selecting different frequency cues when facing new recognition tasks. Specifically, a frequency-aware prompting mechanism is first proposed, in which high-frequency components of the decomposed source image are switched either with normal distribution sampling or zeroing to get frequency-aware augment samples. Then, a mutual attention module is designed to learn generalizable inductive bias under CD-FSL settings. More importantly, the proposed method is a plug-and-play module that can be directly applied to most off-the-shelf CD-FLS methods. Experimental results on CD-FSL benchmarks demonstrate the effectiveness of our proposed method as well as robustly improve the performance of existing CD-FLS methods. Resources at https://github.com/tinkez/FAP_CDFSC.
- Abstract(参考訳): クロスドメインなFew-Shot Learningはメタラーニングの発展に大きく貢献している。
しかし、多くの既存手法は、機能的操作やタスクの多様性の向上を通じて、ドメイン適応的帰納バイアス(メタ知識)の学習に注意を払う一方で、深いネットワークが分類決定のために高周波キューに依存する傾向にある現象を無視しているため、高周波情報が脆弱でノイズの多い情報によって邪魔されやすいため、学習帰属バイアスの堅牢性は低下する。
そこで本研究では,新たな認識課題に直面した場合に,異なる周波数キューを選択することで,ネットワークが人間の視覚的知覚をシミュレートできる,相互に注意を向けた周波数対応プロンプト手法を提案する。
具体的には、分解したソース画像の高周波成分を正規分布サンプリングまたはゼロ化で切り換えて周波数認識増幅サンプルを得る周波数認識プロンプト機構を最初に提案する。
そして、CD-FSL設定下で一般化可能な帰納バイアスを学習するために、相互注意モジュールを設計する。
さらに,本手法は,市販CD-FLS法に直接適用可能なプラグアンドプレイモジュールである。
CD-FSLベンチマーク実験の結果,提案手法の有効性が示され,既存のCD-FLS法の性能が向上した。
https://github.com/tinkez/FAP_CDFSC.com
関連論文リスト
- Frequency-Aware Deepfake Detection: Improving Generalizability through
Frequency Space Learning [81.98675881423131]
この研究は、目に見えないディープフェイク画像を効果的に識別できるユニバーサルディープフェイク検出器を開発するという課題に対処する。
既存の周波数ベースのパラダイムは、偽造検出のためにGANパイプラインのアップサンプリング中に導入された周波数レベルのアーティファクトに依存している。
本稿では、周波数領域学習を中心にしたFreqNetと呼ばれる新しい周波数認識手法を導入し、ディープフェイク検出器の一般化性を高めることを目的とする。
論文 参考訳(メタデータ) (2024-03-12T01:28:00Z) - Towards Building More Robust Models with Frequency Bias [8.510441741759758]
本稿では,中間特徴表現の低周波成分と高周波成分を適応的に再構成するプラグイン・アンド・プレイ・モジュールを提案する。
実験により,提案するモジュールは,任意の対戦型トレーニングフレームワークに容易に組み込むことができることが示された。
論文 参考訳(メタデータ) (2023-07-19T05:46:56Z) - Complementary Frequency-Varying Awareness Network for Open-Set
Fine-Grained Image Recognition [14.450381668547259]
オープンセット画像認識はコンピュータビジョンにおける課題である。
本稿では,高周波情報と低周波情報の両方をよりよく把握できる補完周波数変化認識ネットワークを提案する。
CFANに基づいて,CFAN-OSFGRと呼ばれるオープンセットのきめ細かい画像認識手法を提案する。
論文 参考訳(メタデータ) (2023-07-14T08:15:36Z) - Disentangled Representation Learning for RF Fingerprint Extraction under
Unknown Channel Statistics [77.13542705329328]
本稿では,まず,不整合表現学習(DRL)の枠組みを提案し,入力信号を逆学習によりデバイス関連成分とデバイス関連成分に分解する。
提案フレームワークにおける暗黙的なデータ拡張は、デバイス非関連チャネル統計の過度な適合を避けるために、RFF抽出器に正規化を課す。
実験により、DR-RFFと呼ばれる提案手法は、未知の複雑な伝播環境に対する一般化可能性の観点から従来の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2022-08-04T15:46:48Z) - Adaptive Frequency Learning in Two-branch Face Forgery Detection [66.91715092251258]
本稿では、AFDと呼ばれる2分岐検出フレームワークにおいて、周波数情報を適応的に学習する手法を提案する。
我々は、固定周波数変換からネットワークを解放し、データおよびタスク依存の変換層でより良いパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-03-27T14:25:52Z) - Deep Frequency Filtering for Domain Generalization [55.66498461438285]
Deep Neural Networks(DNN)は、学習プロセスにおいて、いくつかの周波数成分を優先する。
本稿では、ドメイン一般化可能な特徴を学習するためのDeep Frequency Filtering (DFF)を提案する。
提案したDFFをベースラインに適用すると,ドメインの一般化タスクにおける最先端の手法よりも優れることを示す。
論文 参考訳(メタデータ) (2022-03-23T05:19:06Z) - Design of an Novel Spectrum Sensing Scheme Based on Long Short-Term
Memory and Experimental Validation [0.7349727826230862]
深層学習ネットワーク(DLN)の重要な要素である長期記憶(LSTM)に基づくスペクトルセンシング手法を提案する。
提案手法は, Adalm Pluto を用いた実証実験により検証した。
論文 参考訳(メタデータ) (2021-11-21T08:51:48Z) - Learnable Multi-level Frequency Decomposition and Hierarchical Attention
Mechanism for Generalized Face Presentation Attack Detection [7.324459578044212]
顔提示攻撃検知(PAD)は多くの注目を集めており、顔認識システムを保護する上で重要な役割を果たしている。
両ストリーム畳み込みニューラルネットワーク(CNN)フレームワークを提案する。
ステップワイドアブレーション研究において提案したPAD法の設計を実証した。
論文 参考訳(メタデータ) (2021-09-16T13:06:43Z) - Deep Learning Radio Frequency Signal Classification with Hybrid Images [0.0]
入力トレーニングデータに使用できるさまざまな前処理ステップに注目し、結果を固定されたディープラーニングアーキテクチャでテストする。
本稿では,時間領域情報と周波数領域情報の両方を利用するハイブリッド画像を提案し,コンピュータビジョン問題として分類する。
論文 参考訳(メタデータ) (2021-05-19T11:12:09Z) - ADRN: Attention-based Deep Residual Network for Hyperspectral Image
Denoising [52.01041506447195]
ノイズの多いHSIからクリーンなHSIへのマッピングを学習するために,注目に基づくディープ残差ネットワークを提案する。
実験の結果,提案手法は定量的および視覚的評価において最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2020-03-04T08:36:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。