論文の概要: Fault Detection for agents on power grid topology optimization: A Comprehensive analysis
- arxiv url: http://arxiv.org/abs/2406.16426v3
- Date: Tue, 17 Sep 2024 14:54:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-18 21:51:13.705125
- Title: Fault Detection for agents on power grid topology optimization: A Comprehensive analysis
- Title(参考訳): 電力グリッドトポロジー最適化におけるエージェントの故障検出:包括的解析
- Authors: Malte Lehna, Mohamed Hassouna, Dmitry Degtyar, Sven Tomforde, Christoph Scholz,
- Abstract要約: 我々は,電力グリッドシミュレーションの故障に着目し,パターンを特定し,事前に検出する。
クラスタ化によって、5つの異なるクラスタを検出し、一般的な障害タイプを特定します。
故障を事前に検出し、5種類の予測モデルを評価するためのマルチクラス予測手法を提案する。
- 参考スコア(独自算出の注目度): 1.0136215038345013
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Optimizing the topology of transmission networks using Deep Reinforcement Learning (DRL) has increasingly come into focus. Various DRL agents have been proposed, which are mostly benchmarked on the Grid2Op environment from the Learning to Run a Power Network (L2RPN) challenges. The environments have many advantages with their realistic grid scenarios and underlying power flow backends. However, the interpretation of agent survival or failure is not always clear, as there are a variety of potential causes. In this work, we focus on the failures of the power grid simulation to identify patterns and detect them in advance. We collect the failed scenarios of three different agents on the WCCI 2022 L2RPN environment, totaling about 40k data points. By clustering, we are able to detect five distinct clusters, identifying common failure types. Further, we propose a multi-class prediction approach to detect failures beforehand and evaluate five different prediction models. Here, the Light Gradient-Boosting Machine (LightGBM) shows the best failure prediction performance, with an accuracy of 82%. It also accurately classifies whether a the grid survives or fails in 87% of cases. Finally, we provide a detailed feature importance analysis that identifies critical features and regions in the grid.
- Abstract(参考訳): Deep Reinforcement Learning (DRL) を用いた送信ネットワークのトポロジの最適化が注目されている。
様々なDRLエージェントが提案されており、主にLearning to Run a Power Network (L2RPN)の課題からGrid2Op環境にベンチマークされている。
現実的なグリッドシナリオと基盤となる電力フローバックエンドでは、環境には多くの利点があります。
しかしながら、エージェントの生存または失敗の解釈は、様々な潜在的な原因があるため、必ずしも明確ではない。
本研究では,電力グリッドシミュレーションの故障に着目し,パターンを特定し,事前に検出する。
WCCI 2022 L2RPN環境における3つの異なるエージェントの失敗シナリオを収集し,約40kのデータポイントを収集した。
クラスタ化によって、5つの異なるクラスタを検出し、一般的な障害タイプを特定します。
さらに, 故障を事前に検出し, 5種類の予測モデルを評価するマルチクラス予測手法を提案する。
ここでは、Light Gradient-Boosting Machine (LightGBM) が82%の精度で、最高の障害予測性能を示している。
また、グリッドが生存するかどうかを87%のケースで正確に分類する。
最後に、グリッド内の重要な特徴や領域を識別する、詳細な特徴重要度分析を提供する。
関連論文リスト
- Diffusion Models as Network Optimizers: Explorations and Analysis [71.69869025878856]
生成拡散モデル(GDM)は,ネットワーク最適化の新しいアプローチとして期待されている。
本研究ではまず,生成モデルの本質的な特徴について考察する。
本稿では,識別的ネットワーク最適化よりも生成モデルの利点を簡潔かつ直感的に示す。
論文 参考訳(メタデータ) (2024-11-01T09:05:47Z) - Generative Edge Detection with Stable Diffusion [52.870631376660924]
エッジ検出は一般的に、主に識別法によって対処されるピクセルレベルの分類問題と見なされる。
本稿では、事前学習した安定拡散モデルのポテンシャルを十分に活用して、GED(Generative Edge Detector)という新しい手法を提案する。
複数のデータセットに対して広範な実験を行い、競争性能を達成する。
論文 参考訳(メタデータ) (2024-10-04T01:52:23Z) - Explainable AI for Comparative Analysis of Intrusion Detection Models [20.683181384051395]
本研究は,ネットワークトラフィックから侵入検出を行うために,各種機械学習モデルを二分分類および多クラス分類のタスクに解析する。
すべてのモデルをUNSW-NB15データセットで90%の精度でトレーニングしました。
また、Random Forestは正確さ、時間効率、堅牢性という点で最高のパフォーマンスを提供します。
論文 参考訳(メタデータ) (2024-06-14T03:11:01Z) - Active search and coverage using point-cloud reinforcement learning [50.741409008225766]
本稿では,目的探索とカバレッジのためのエンドツーエンドの深層強化学習ソリューションを提案する。
RLの深い階層的特徴学習は有効であり、FPS(Fastthest Point sample)を用いることで点数を削減できることを示す。
また、ポイントクラウドに対するマルチヘッドの注意がエージェントの学習を高速化する上で有効であるが、同じ結果に収束することを示す。
論文 参考訳(メタデータ) (2023-12-18T18:16:30Z) - Two-Stage Adaptive Network for Semi-Supervised Cross-Domain Crater Detection under Varying Scenario Distributions [17.28368878719324]
クロスクレーター検出のための2段階適応ネットワーク(TAN)を提案する。
我々のネットワークはYOLOv5検出器上に構築されており、そこではクロスドメインの一般化能力を高めるために一連の戦略が採用されている。
ベンチマークデータセットによる実験結果から,提案するネットワークは,様々なシナリオ分布下でのクレーター検出の領域適応性を向上できることが示された。
論文 参考訳(メタデータ) (2023-12-11T07:16:49Z) - Bridging Precision and Confidence: A Train-Time Loss for Calibrating
Object Detection [58.789823426981044]
本稿では,境界ボックスのクラス信頼度を予測精度に合わせることを目的とした,新たな補助損失定式化を提案する。
その結果,列車の走行時間損失はキャリブレーション基準を超過し,キャリブレーション誤差を低減させることがわかった。
論文 参考訳(メタデータ) (2023-03-25T08:56:21Z) - Deep Attention Recognition for Attack Identification in 5G UAV
scenarios: Novel Architecture and End-to-End Evaluation [3.3253720226707992]
5Gフレームワークに固有の堅牢なセキュリティ機能にもかかわらず、攻撃者は依然として5G無人航空機(UAV)の運用を妨害する方法を見つけるだろう。
我々は,認証されたUAVに埋め込まれた小さなディープネットワークに基づく攻撃を識別するためのソリューションとして,Deep Attention Recognition (DAtR)を提案する。
論文 参考訳(メタデータ) (2023-03-03T17:10:35Z) - PreGAN: Preemptive Migration Prediction Network for Proactive
Fault-Tolerant Edge Computing [12.215537834860699]
本稿では,GAN(Generative Adrial Network)を用いた複合AIモデルPreGANを提案する。
PreGANは、欠陥検出、診断、分類において最先端のベースライン手法より優れており、高い品質のサービスを実現することができる。
論文 参考訳(メタデータ) (2021-12-04T09:40:50Z) - Physics-Informed Graph Learning for Robust Fault Location in
Distribution Systems [2.984934409689467]
分散エネルギー資源の急速な成長は電力グリッドの不安定性を増大させる可能性がある。
有望な戦略の1つは、検出と位置によって異常事象(例えば障害)に効率的に応答するために電力網にデータを使用することである。
本稿では,2段階の物理インフォームドグラフ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-07-05T21:18:37Z) - Uncertainty-Aware Deep Calibrated Salient Object Detection [74.58153220370527]
既存のディープニューラルネットワークに基づくサルエントオブジェクト検出(SOD)手法は主に高いネットワーク精度の追求に重点を置いている。
これらの手法は、信頼不均衡問題として知られるネットワーク精度と予測信頼の間のギャップを見落としている。
我々は,不確実性を考慮した深部SODネットワークを導入し,深部SODネットワークの過信を防止するための2つの戦略を提案する。
論文 参考訳(メタデータ) (2020-12-10T23:28:36Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
本稿では,予測の多様性を奨励することで,ニューラルネットワークの効果的なアンサンブルを生成する問題をターゲットにする。
そこで本研究では,潜伏変数の学習における逆損失の多様性を明示的に最適化し,マルチモーダルデータのモデリングに必要な出力予測の多様性を得る。
最も競争力のあるベースラインと比較して、データ分布の変化の下で、分類精度が大幅に向上した。
論文 参考訳(メタデータ) (2020-03-10T03:10:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。