論文の概要: UniCoder: Scaling Code Large Language Model via Universal Code
- arxiv url: http://arxiv.org/abs/2406.16441v1
- Date: Mon, 24 Jun 2024 08:32:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 15:43:33.441345
- Title: UniCoder: Scaling Code Large Language Model via Universal Code
- Title(参考訳): UniCoder:Universal Codeによる大規模言語モデルのスケーリング
- Authors: Tao Sun, Linzheng Chai, Jian Yang, Yuwei Yin, Hongcheng Guo, Jiaheng Liu, Bing Wang, Liqun Yang, Zhoujun Li,
- Abstract要約: 中間表現としてユニバーサルコード(UniCode)を導入する。
UniCoder-Instructは自然言語の質問、コードソリューション、および対応するユニバーサルコードから構成される。
中間普遍符号表現と最終符号解とのアライメントは、生成されたコードの品質を大幅に向上させる。
- 参考スコア(独自算出の注目度): 40.248836046285014
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Intermediate reasoning or acting steps have successfully improved large language models (LLMs) for handling various downstream natural language processing (NLP) tasks. When applying LLMs for code generation, recent works mainly focus on directing the models to articulate intermediate natural-language reasoning steps, as in chain-of-thought (CoT) prompting, and then output code with the natural language or other structured intermediate steps. However, such output is not suitable for code translation or generation tasks since the standard CoT has different logical structures and forms of expression with the code. In this work, we introduce the universal code (UniCode) as the intermediate representation. It is a description of algorithm steps using a mix of conventions of programming languages, such as assignment operator, conditional operator, and loop. Hence, we collect an instruction dataset UniCoder-Instruct to train our model UniCoder on multi-task learning objectives. UniCoder-Instruct comprises natural-language questions, code solutions, and the corresponding universal code. The alignment between the intermediate universal code representation and the final code solution significantly improves the quality of the generated code. The experimental results demonstrate that UniCoder with the universal code significantly outperforms the previous prompting methods by a large margin, showcasing the effectiveness of the structural clues in pseudo-code.
- Abstract(参考訳): 中間推論や行動ステップは、様々な下流自然言語処理(NLP)タスクを処理するために、大きな言語モデル(LLM)の改善に成功している。
コード生成にLLMを適用する場合、最近の研究は主に、チェーン・オブ・ソート(CoT)のプロンプトのように、中間的な自然言語推論ステップを記述し、その後、自然言語や他の構造化された中間ステップでコードを出力するようにモデルを指示することに焦点を当てている。
しかし、標準的なCoTはコードとの論理構造や表現形式が異なるため、コード変換や生成タスクには適していない。
本稿では,中間表現としてユニバーサルコード(UniCode)を導入する。
これは代入演算子、条件演算子、ループなどのプログラミング言語の規則を混合したアルゴリズムステップの記述である。
そこで我々は、UniCoder-Instructという命令データセットを収集し、マルチタスク学習の目的に基づいてモデルUniCoderを訓練する。
UniCoder-Instructは自然言語の質問、コードソリューション、および対応するユニバーサルコードから構成される。
中間普遍符号表現と最終符号解とのアライメントは、生成されたコードの品質を大幅に向上させる。
実験結果から,UniCoderは,擬似符号における構造的手がかりの有効性を示すとともに,従来のプロンプト手法よりも大幅に優れていた。
関連論文リスト
- NoviCode: Generating Programs from Natural Language Utterances by Novices [59.71218039095155]
初心者非プログラマによるAPIと自然言語記述を入力とする新しいNLプログラミングタスクであるNoviCodeを提示する。
我々は、NoviCodeがコード合成領域における挑戦的なタスクであることを示し、非技術的命令から複雑なコードを生成することは、現在のText-to-Codeパラダイムを超えている。
論文 参考訳(メタデータ) (2024-07-15T11:26:03Z) - CodeGRAG: Extracting Composed Syntax Graphs for Retrieval Augmented Cross-Lingual Code Generation [60.799992690487336]
単一ラウンドのコード生成タスクにおいて,LLMの性能を向上させるための構文グラフ検索コード生成(CodeGRAG)を提案する。
CodeGRAGはLLMのコード生成能力を大幅に改善し、言語間コード生成のパフォーマンス向上も実現している。
論文 参考訳(メタデータ) (2024-05-03T02:48:55Z) - Comments as Natural Logic Pivots: Improve Code Generation via Comment Perspective [85.48043537327258]
本稿では, MANGO (comMents As Natural loGic pivOts) を提案する。
その結果、MANGOは強いベースラインに基づいてコードパス率を大幅に改善することがわかった。
論理的なコメントの復号化戦略の堅牢性は、考えの連鎖よりも顕著に高い。
論文 参考訳(メタデータ) (2024-04-11T08:30:46Z) - IRCoder: Intermediate Representations Make Language Models Robust Multilingual Code Generators [49.903001442804594]
本研究では、コンパイラ中間表現(IR)を活用して、Code-LMの多言語機能を改善する可能性について検討する。
まず,約400万のソースコードファイルからなる並列データセットであるSLTransをコンパイルする。
次に、SLTransにおける因果言語モデリングトレーニングを継続して実施し、Code-LMはIR言語を学習せざるを得なかった。
IRCoderと呼ばれる結果のモデルは、さまざまなコード生成タスクやメトリクスに対して、サイズと一貫性のあるゲインを表示します。
論文 参考訳(メタデータ) (2024-03-06T17:52:08Z) - Exploring Large Language Models for Code Explanation [3.2570216147409514]
大規模言語モデル(LLM)は自然言語処理において顕著な進歩を遂げている。
本研究では,様々なLLMを用いて,コードスニペットの自然言語要約を生成するタスクについて検討する。
論文 参考訳(メタデータ) (2023-10-25T14:38:40Z) - Bridging Code Semantic and LLMs: Semantic Chain-of-Thought Prompting for
Code Generation [22.219645213202178]
本稿では,SeCoT というコードの意味情報を抽出する "Semantic Chain-of-Thought" 手法を提案する。
本研究では,SeCoTが最先端の性能を実現し,大規模モデルやコード生成の可能性を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2023-10-16T05:09:58Z) - CodeT5+: Open Code Large Language Models for Code Understanding and
Generation [72.1638273937025]
大きな言語モデル (LLM) は膨大なソースコードで事前訓練されており、コードインテリジェンスにおいて顕著な進歩を遂げている。
CodeT5+は、コンポーネントモジュールを柔軟に組み合わせて、幅広い下流のコードタスクに適合させることができるコードのためのエンコーダ-デコーダLLMのファミリーである。
我々は、ゼロショット、微調整、命令調整を含む20以上のコード関連ベンチマークでCodeT5+を広範囲に評価した。
論文 参考訳(メタデータ) (2023-05-13T14:23:07Z) - CLSEBERT: Contrastive Learning for Syntax Enhanced Code Pre-Trained
Model [23.947178895479464]
CLSEBERTは,構文強化符号事前学習モデルのための構築学習フレームワークである。
事前学習段階では、抽象構文木(AST)に含まれるコード構文と階層について検討する。
ひとつは抽象構文木内のノード間のエッジを予測することであり、もう一つはコードトークンの型を予測することである。
論文 参考訳(メタデータ) (2021-08-10T10:08:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。