Cubic regularized subspace Newton for non-convex optimization
- URL: http://arxiv.org/abs/2406.16666v1
- Date: Mon, 24 Jun 2024 14:20:02 GMT
- Title: Cubic regularized subspace Newton for non-convex optimization
- Authors: Jim Zhao, Aurelien Lucchi, Nikita Doikov,
- Abstract summary: We analyze a coordinate second-order SSCN which can be interpreted as applying stationary regularization in random subspaces.
We demonstrate substantial speed-ups compared to conventional first-order methods.
- Score: 3.481985817302898
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper addresses the optimization problem of minimizing non-convex continuous functions, which is relevant in the context of high-dimensional machine learning applications characterized by over-parametrization. We analyze a randomized coordinate second-order method named SSCN which can be interpreted as applying cubic regularization in random subspaces. This approach effectively reduces the computational complexity associated with utilizing second-order information, rendering it applicable in higher-dimensional scenarios. Theoretically, we establish convergence guarantees for non-convex functions, with interpolating rates for arbitrary subspace sizes and allowing inexact curvature estimation. When increasing subspace size, our complexity matches $\mathcal{O}(\epsilon^{-3/2})$ of the cubic regularization (CR) rate. Additionally, we propose an adaptive sampling scheme ensuring exact convergence rate of $\mathcal{O}(\epsilon^{-3/2}, \epsilon^{-3})$ to a second-order stationary point, even without sampling all coordinates. Experimental results demonstrate substantial speed-ups achieved by SSCN compared to conventional first-order methods.
Related papers
- Obtaining Lower Query Complexities through Lightweight Zeroth-Order Proximal Gradient Algorithms [65.42376001308064]
We propose two variance reduced ZO estimators for complex gradient problems.
We improve the state-of-the-art function complexities from $mathcalOleft(minfracdn1/2epsilon2, fracdepsilon3right)$ to $tildecalOleft(fracdepsilon2right)$.
arXiv Detail & Related papers (2024-10-03T15:04:01Z) - Stochastic First-Order Methods with Non-smooth and Non-Euclidean Proximal Terms for Nonconvex High-Dimensional Stochastic Optimization [2.0657831823662574]
When the non problem is by which the non problem is by whichity, the sample of first-order methods may depend linearly on the problem dimension, is for undesirable problems.
Our algorithms allow for the estimate of complexity using the distance of.
mathO (log d) / EuM4.
We prove that DISFOM can sharpen variance employing $mathO (log d) / EuM4.
arXiv Detail & Related papers (2024-06-27T18:38:42Z) - Krylov Cubic Regularized Newton: A Subspace Second-Order Method with
Dimension-Free Convergence Rate [83.3933097134767]
We introduce a novel subspace cubic regularized Newton method that achieves a dimension-independent global convergence rate of $Oleft(frac1mk+frac1k2right)$.
Our method converges faster than existing random subspace methods, especially for high-dimensional problems.
arXiv Detail & Related papers (2024-01-05T20:24:18Z) - Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
Trust-region (TR) and adaptive regularization using cubics have proven to have some very appealing theoretical properties.
We show that TR and ARC methods can simultaneously provide inexact computations of the Hessian, gradient, and function values.
arXiv Detail & Related papers (2023-10-18T10:29:58Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
Efficient computation of the optimal transport distance between two distributions serves as an algorithm that empowers various applications.
This paper develops a scalable first-order optimization-based method that computes optimal transport to within $varepsilon$ additive accuracy.
arXiv Detail & Related papers (2023-01-30T15:46:39Z) - A Newton-CG based barrier-augmented Lagrangian method for general nonconvex conic optimization [53.044526424637866]
In this paper we consider finding an approximate second-order stationary point (SOSP) that minimizes a twice different subject general non conic optimization.
In particular, we propose a Newton-CG based-augmentedconjugate method for finding an approximate SOSP.
arXiv Detail & Related papers (2023-01-10T20:43:29Z) - Explicit Second-Order Min-Max Optimization Methods with Optimal Convergence Guarantee [86.05440220344755]
We propose and analyze inexact regularized Newton-type methods for finding a global saddle point of emphcon unconstrained min-max optimization problems.
We show that the proposed methods generate iterates that remain within a bounded set and that the iterations converge to an $epsilon$-saddle point within $O(epsilon-2/3)$ in terms of a restricted function.
arXiv Detail & Related papers (2022-10-23T21:24:37Z) - DRSOM: A Dimension Reduced Second-Order Method [13.778619250890406]
Under a trust-like framework, our method preserves the convergence of the second-order method while using only information in a few directions.
Theoretically, we show that the method has a local convergence and a global convergence rate of $O(epsilon-3/2)$ to satisfy the first-order and second-order conditions.
arXiv Detail & Related papers (2022-07-30T13:05:01Z) - Convergence Analysis of Nonconvex Distributed Stochastic Zeroth-order
Coordinate Method [3.860616339202303]
This paper investigates the distributed non optimization problem of minimizing a global cost function formed by the summation of $ZOn$ local cost functions.
Agents approximate their own ZO coordinate method to solve the problem.
arXiv Detail & Related papers (2021-03-24T03:07:46Z) - Escaping Saddle-Points Faster under Interpolation-like Conditions [19.9471360853892]
We show that under over-parametrization several standard optimization algorithms escape saddle-points and converge to local-minimizers much faster.
We discuss the first-order oracle complexity of Perturbed Gradient Descent (PSGD) algorithm to reach an $epsilon$ localminimizer.
We next analyze Cubic-Regularized Newton (SCRN) algorithm under-like conditions, and show that the oracle complexity to reach an $epsilon$ local-minimizer under-like conditions, is $tildemathcalO (1/epsilon2.5
arXiv Detail & Related papers (2020-09-28T02:15:18Z) - Stochastic Subspace Cubic Newton Method [14.624340432672172]
We propose a new randomized second-order optimization algorithm for minimizing a high dimensional convex function $f$.
We prove that as we vary the minibatch size, the global convergence rate of SSCN interpolates between the rate of coordinate descent (CD) and the rate of cubic regularized Newton.
Remarkably, the local convergence rate of SSCN matches the rate of subspace descent applied to the problem of minimizing the quadratic function $frac12 (x-x*)top nabla2f(x*)(x-x*)$, where $x
arXiv Detail & Related papers (2020-02-21T19:42:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.