Random Subspace Cubic-Regularization Methods, with Applications to Low-Rank Functions
- URL: http://arxiv.org/abs/2501.09734v1
- Date: Thu, 16 Jan 2025 18:37:59 GMT
- Title: Random Subspace Cubic-Regularization Methods, with Applications to Low-Rank Functions
- Authors: Coralia Cartis, Zhen Shao, Edward Tansley,
- Abstract summary: We propose and analyze random subspace variants of the second-order Adaptive Regularization.
Our methods iteratively restrict the search space to some random subspace of the parameters, constructing and minimizing a local model only within this subspace.
- Score: 0.0
- License:
- Abstract: We propose and analyze random subspace variants of the second-order Adaptive Regularization using Cubics (ARC) algorithm. These methods iteratively restrict the search space to some random subspace of the parameters, constructing and minimizing a local model only within this subspace. Thus, our variants only require access to (small-dimensional) projections of first- and second-order problem derivatives and calculate a reduced step inexpensively. Under suitable assumptions, the ensuing methods maintain the optimal first-order, and second-order, global rates of convergence of (full-dimensional) cubic regularization, while showing improved scalability both theoretically and numerically, particularly when applied to low-rank functions. When applied to the latter, our adaptive variant naturally adapts the subspace size to the true rank of the function, without knowing it a priori.
Related papers
- Cubic regularized subspace Newton for non-convex optimization [3.481985817302898]
We analyze a coordinate second-order SSCN which can be interpreted as applying stationary regularization in random subspaces.
We demonstrate substantial speed-ups compared to conventional first-order methods.
arXiv Detail & Related papers (2024-06-24T14:20:02Z) - Adaptive and Optimal Second-order Optimistic Methods for Minimax Optimization [32.939120407900035]
Our algorithms feature a simple update rule that requires solving only one linear system per iteration.
We also evaluate the practical performance of our algorithm by comparing it to existing second-order algorithms for minimax optimization.
arXiv Detail & Related papers (2024-06-04T06:56:41Z) - An Adaptive Dimension Reduction Estimation Method for High-dimensional
Bayesian Optimization [6.79843988450982]
We propose a two-step optimization framework to extend BO to high-dimensional settings.
Our algorithm offers the flexibility to operate these steps either concurrently or in sequence.
Numerical experiments validate the efficacy of our method in challenging scenarios.
arXiv Detail & Related papers (2024-03-08T16:21:08Z) - Krylov Cubic Regularized Newton: A Subspace Second-Order Method with
Dimension-Free Convergence Rate [83.3933097134767]
We introduce a novel subspace cubic regularized Newton method that achieves a dimension-independent global convergence rate of $Oleft(frac1mk+frac1k2right)$.
Our method converges faster than existing random subspace methods, especially for high-dimensional problems.
arXiv Detail & Related papers (2024-01-05T20:24:18Z) - A Dimensionality Reduction Method for Finding Least Favorable Priors
with a Focus on Bregman Divergence [108.28566246421742]
This paper develops a dimensionality reduction method that allows us to move the optimization to a finite-dimensional setting with an explicit bound on the dimension.
In order to make progress on the problem, we restrict ourselves to Bayesian risks induced by a relatively large class of loss functions, namely Bregman divergences.
arXiv Detail & Related papers (2022-02-23T16:22:28Z) - Sequential Subspace Search for Functional Bayesian Optimization
Incorporating Experimenter Intuition [63.011641517977644]
Our algorithm generates a sequence of finite-dimensional random subspaces of functional space spanned by a set of draws from the experimenter's Gaussian Process.
Standard Bayesian optimisation is applied on each subspace, and the best solution found used as a starting point (origin) for the next subspace.
We test our algorithm in simulated and real-world experiments, namely blind function matching, finding the optimal precipitation-strengthening function for an aluminium alloy, and learning rate schedule optimisation for deep networks.
arXiv Detail & Related papers (2020-09-08T06:54:11Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Effective Dimension Adaptive Sketching Methods for Faster Regularized
Least-Squares Optimization [56.05635751529922]
We propose a new randomized algorithm for solving L2-regularized least-squares problems based on sketching.
We consider two of the most popular random embeddings, namely, Gaussian embeddings and the Subsampled Randomized Hadamard Transform (SRHT)
arXiv Detail & Related papers (2020-06-10T15:00:09Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
This class of algorithms encompasses several randomized methods among the fastest solvers for least-squares problems.
We focus on two classical embeddings, namely, Gaussian projections and subsampled Hadamard transforms.
Our resulting algorithm yields the best complexity known for solving least-squares problems with no condition number dependence.
arXiv Detail & Related papers (2020-02-21T17:45:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.