Probabilistic Subgoal Representations for Hierarchical Reinforcement learning
- URL: http://arxiv.org/abs/2406.16707v1
- Date: Mon, 24 Jun 2024 15:09:22 GMT
- Title: Probabilistic Subgoal Representations for Hierarchical Reinforcement learning
- Authors: Vivienne Huiling Wang, Tinghuai Wang, Wenyan Yang, Joni-Kristian Kämäräinen, Joni Pajarinen,
- Abstract summary: In goal-conditioned hierarchical reinforcement learning, a high-level policy specifies a subgoal for the low-level policy to reach.
Existing methods adopt a subgoal representation that provides a deterministic mapping from state space to latent subgoal space.
This paper employs a GP prior on the latent subgoal space to learn a posterior distribution over the subgoal representation functions.
- Score: 16.756888009396462
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In goal-conditioned hierarchical reinforcement learning (HRL), a high-level policy specifies a subgoal for the low-level policy to reach. Effective HRL hinges on a suitable subgoal represen tation function, abstracting state space into latent subgoal space and inducing varied low-level behaviors. Existing methods adopt a subgoal representation that provides a deterministic mapping from state space to latent subgoal space. Instead, this paper utilizes Gaussian Processes (GPs) for the first probabilistic subgoal representation. Our method employs a GP prior on the latent subgoal space to learn a posterior distribution over the subgoal representation functions while exploiting the long-range correlation in the state space through learnable kernels. This enables an adaptive memory that integrates long-range subgoal information from prior planning steps allowing to cope with stochastic uncertainties. Furthermore, we propose a novel learning objective to facilitate the simultaneous learning of probabilistic subgoal representations and policies within a unified framework. In experiments, our approach outperforms state-of-the-art baselines in standard benchmarks but also in environments with stochastic elements and under diverse reward conditions. Additionally, our model shows promising capabilities in transferring low-level policies across different tasks.
Related papers
- Learning Optimal Deterministic Policies with Stochastic Policy Gradients [62.81324245896716]
Policy gradient (PG) methods are successful approaches to deal with continuous reinforcement learning (RL) problems.
In common practice, convergence (hyper)policies are learned only to deploy their deterministic version.
We show how to tune the exploration level used for learning to optimize the trade-off between the sample complexity and the performance of the deployed deterministic policy.
arXiv Detail & Related papers (2024-05-03T16:45:15Z) - Foundation Policies with Hilbert Representations [54.44869979017766]
We propose an unsupervised framework to pre-train generalist policies from unlabeled offline data.
Our key insight is to learn a structured representation that preserves the temporal structure of the underlying environment.
Our experiments show that our unsupervised policies can solve goal-conditioned and general RL tasks in a zero-shot fashion.
arXiv Detail & Related papers (2024-02-23T19:09:10Z) - Score-Aware Policy-Gradient Methods and Performance Guarantees using Local Lyapunov Conditions: Applications to Product-Form Stochastic Networks and Queueing Systems [1.747623282473278]
We introduce a policygradient method for model reinforcement learning (RL) that exploits a type of stationary distributions commonly obtained from decision processes (MDPs) in networks.
Specifically, when the stationary distribution of the MDP is parametrized by policy parameters, we can improve existing policy methods for average-reward estimation.
arXiv Detail & Related papers (2023-12-05T14:44:58Z) - HIQL: Offline Goal-Conditioned RL with Latent States as Actions [81.67963770528753]
We propose a hierarchical algorithm for goal-conditioned RL from offline data.
We show how this hierarchical decomposition makes our method robust to noise in the estimated value function.
Our method can solve long-horizon tasks that stymie prior methods, can scale to high-dimensional image observations, and can readily make use of action-free data.
arXiv Detail & Related papers (2023-07-22T00:17:36Z) - Goal-Conditioned Imitation Learning using Score-based Diffusion Policies [3.49482137286472]
We propose a new policy representation based on score-based diffusion models (SDMs)
We apply our new policy representation in the domain of Goal-Conditioned Imitation Learning (GCIL)
We show how BESO can even be used to learn a goal-independent policy from play-data usingintuitive-free guidance.
arXiv Detail & Related papers (2023-04-05T15:52:34Z) - Imitating Graph-Based Planning with Goal-Conditioned Policies [72.61631088613048]
We present a self-imitation scheme which distills a subgoal-conditioned policy into the target-goal-conditioned policy.
We empirically show that our method can significantly boost the sample-efficiency of the existing goal-conditioned RL methods.
arXiv Detail & Related papers (2023-03-20T14:51:10Z) - Planning to Practice: Efficient Online Fine-Tuning by Composing Goals in
Latent Space [76.46113138484947]
General-purpose robots require diverse repertoires of behaviors to complete challenging tasks in real-world unstructured environments.
To address this issue, goal-conditioned reinforcement learning aims to acquire policies that can reach goals for a wide range of tasks on command.
We propose Planning to Practice, a method that makes it practical to train goal-conditioned policies for long-horizon tasks.
arXiv Detail & Related papers (2022-05-17T06:58:17Z) - Interpretable Reinforcement Learning with Multilevel Subgoal Discovery [77.34726150561087]
We propose a novel Reinforcement Learning model for discrete environments.
In the model, an agent learns information about environment in the form of probabilistic rules.
No reward function is required for learning; an agent only needs to be given a primary goal to achieve.
arXiv Detail & Related papers (2022-02-15T14:04:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.