論文の概要: Neural Network-based Two-Dimensional Filtering for OTFS Symbol Detection
- arxiv url: http://arxiv.org/abs/2406.16868v1
- Date: Fri, 8 Mar 2024 21:33:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 06:51:29.404754
- Title: Neural Network-based Two-Dimensional Filtering for OTFS Symbol Detection
- Title(参考訳): OTFSシンボル検出のためのニューラルネットワークによる2次元フィルタリング
- Authors: Jiarui Xu, Karim Said, Lizhong Zheng, Lingjia Liu,
- Abstract要約: OTFSシステムにおいて、オンラインサブフレームベースのシンボル検出のためのReservoir Computing (RC)ベースのアプローチが導入されている。
本稿では,OTFSシステムにおけるサブフレームに基づくオンラインシンボル検出のための2次元RC (2D-RC) 手法を提案する。
- 参考スコア(独自算出の注目度): 29.019014658900463
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Orthogonal time frequency space (OTFS) is a promising modulation scheme for wireless communication in high-mobility scenarios. Recently, a reservoir computing (RC) based approach has been introduced for online subframe-based symbol detection in the OTFS system, where only the limited over-the-air (OTA) pilot symbols are utilized for training. However, the previous RC-based approach does not design the RC architecture based on the properties of the OTFS system to fully unlock the potential of RC. This paper introduces a novel two-dimensional RC (2D-RC) approach for online symbol detection on a subframe basis in the OTFS system. The 2D-RC is designed to have a two-dimensional (2D) filtering structure to equalize the 2D circular channel effect in the delay-Doppler (DD) domain of the OTFS system. With the introduced architecture, the 2D-RC can operate in the DD domain with only a single neural network, unlike our previous work which requires multiple RCs to track channel variations in the time domain. Experimental results demonstrate the advantages of the 2D-RC approach over the previous RC-based approach and the compared model-based methods across different modulation orders.
- Abstract(参考訳): 直交時間周波数空間(OTFS)は、高移動度シナリオにおける無線通信のための有望な変調方式である。
近年,OTFSシステムにおけるオンラインサブフレームベースのシンボル検出に,リザーブコンピューティング(RC)ベースのアプローチが導入されている。
しかし、以前のRCベースのアプローチでは、RCの可能性を完全に解き放つためにOTFSシステムの特性に基づいてRCアーキテクチャを設計しなかった。
本稿では,OTFSシステムにおけるサブフレームに基づくオンラインシンボル検出のための2次元RC (2D-RC) 手法を提案する。
2D-RC は OTFS システムの遅延ドップラー (DD) 領域における2次元円チャネル効果を等化するための2次元 (2D) フィルタ構造を持つように設計されている。
導入したアーキテクチャでは、2D-RCは単一のニューラルネットワークでDDドメインで動作することができる。
実験により,従来のRC法と異なる変調順序で比較したモデルベース手法に対する2D-RC法の有効性が示された。
関連論文リスト
- TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
本稿では,新しい2ストリーム機能融合 "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) アーキテクチャを提案する。
時間空間領域における意味のあるパターンをよりよく学習するために、ハイブリッド畳み込み変換器を統合する「CT」ストリームを設計する。
並行して、時間周波数領域からリッチなパターンを効率的に抽出するために、連続ウェーブレット変換(CWT)を用いて情報を2次元テンソル形式で表現する「TC」ストリームを導入する。
論文 参考訳(メタデータ) (2024-04-15T06:01:48Z) - 2D-RC: Two-Dimensional Neural Network Approach for OTFS Symbol Detection [29.019014658900463]
OTFSシステムにおいて、オンラインサブフレームベースのシンボル検出のためのReservoir Computing (RC)ベースのアプローチが導入されている。
本稿では,OTFSシステムのドメイン知識をシンボル検出の設計に組み込んだ2次元RC(2D-RC)手法を提案する。
論文 参考訳(メタデータ) (2023-11-14T21:16:40Z) - Detect to Learn: Structure Learning with Attention and Decision Feedback
for MIMO-OFDM Receive Processing [25.66317464603635]
本稿では、パイロットシンボルを効率的に利用し、検出されたペイロードデータで動的に更新できるオンラインアテンションベースのアプローチであるRC-AttStructNet-DFを提案する。
DF機構は、検出されたデータシンボルを介してチャネル変化を動的に追跡することにより、検出性能をさらに向上する。
論文 参考訳(メタデータ) (2022-08-17T20:01:05Z) - RC-Struct: A Structure-based Neural Network Approach for MIMO-OFDM
Detection [33.414673669107906]
信号検出のための構造ベースニューラルネットワークアーキテクチャであるRC-Structを導入する。
RC構造は貯水池計算(RC)を通して信号の時間構造を利用する
紹介されたRC-Structは、5Gと5G Beyondの通信ドメイン知識と学習ベースの受信処理の組み合わせに光を当てている。
論文 参考訳(メタデータ) (2021-10-03T19:39:21Z) - LoRD-Net: Unfolded Deep Detection Network with Low-Resolution Receivers [104.01415343139901]
本稿では,1ビット計測から情報シンボルを復元する「LoRD-Net」というディープ検出器を提案する。
LoRD-Netは、関心のシグナルを回復するためのタスクベースのアーキテクチャである。
無線通信における1ビット信号回復のためのレシーバアーキテクチャの評価を行った。
論文 参考訳(メタデータ) (2021-02-05T04:26:05Z) - Distributed Conditional Generative Adversarial Networks (GANs) for
Data-Driven Millimeter Wave Communications in UAV Networks [116.94802388688653]
無人航空機(UAV)無線ネットワークにおけるミリ波(mmWave)通信のための,データ駆動型空対地(A2G)チャネル推定手法を提案する。
実効的なチャネル推定手法を開発し、各UAVは、各ビームフォーミング方向に沿って条件付き生成対向ネットワーク(CGAN)を介してスタンドアロンチャネルモデルを訓練することができる。
分散CGANアーキテクチャに基づく協調的なフレームワークを開発し、各UAVがmmWaveチャネルの分布を協調的に学習できるようにする。
論文 参考訳(メタデータ) (2021-02-02T20:56:46Z) - Harnessing Tensor Structures -- Multi-Mode Reservoir Computing and Its
Application in Massive MIMO [39.46260351352041]
新しいニューラルネットワーク(NN)構造、マルチモード貯留層コンピューティング(マルチモードRC)を紹介します。
マルチモードRCベースの学習フレームワークは、無線システムの実用的制約を効果的に効果的に対処することができる。
論文 参考訳(メタデータ) (2021-01-25T20:30:22Z) - Anchor-free Small-scale Multispectral Pedestrian Detection [88.7497134369344]
適応型単一段アンカーフリーベースアーキテクチャにおける2つのモードの効果的かつ効率的な多重スペクトル融合法を提案する。
我々は,直接的境界ボックス予測ではなく,対象の中心と規模に基づく歩行者表現の学習を目指す。
その結果,小型歩行者の検出における本手法の有効性が示唆された。
論文 参考訳(メタデータ) (2020-08-19T13:13:01Z) - Multi-Stage Hybrid Federated Learning over Large-Scale D2D-Enabled Fog
Networks [61.30171206892684]
ネットワークを多層クラスタベース構造とみなす階層内モデル学習と層間モデル学習のハイブリッドを開発する。
MH-FLは、デバイス間通信(D2D)を介して形成されたローカルネットワークを含む、クラスタ内のノード間のトポロジー構造を考察している。
異なるネットワーク層におけるデバイスを協調的/協調的にオーケストレーションし、モデルパラメータの局所的なコンセンサスを形成する。
論文 参考訳(メタデータ) (2020-07-18T20:03:07Z) - RCNet: Incorporating Structural Information into Deep RNN for MIMO-OFDM
Symbol Detection with Limited Training [26.12840500767443]
我々は、OFDM信号に固有の構造情報を活用するために、時間周波数RCを導入する。
RCNetは、浅いRC構造よりも高速な学習収束と最大20%のビット誤り率を提供できることを示す。
論文 参考訳(メタデータ) (2020-03-15T21:06:40Z) - Searching Central Difference Convolutional Networks for Face
Anti-Spoofing [68.77468465774267]
顔認識システムにおいて、顔の反偽造(FAS)が重要な役割を担っている。
最先端のFASメソッドの多くは、スタック化された畳み込みと専門家が設計したネットワークに依存している。
ここでは、中央差分畳み込み(CDC)に基づくフレームレベルの新しいFAS手法を提案する。
論文 参考訳(メタデータ) (2020-03-09T12:48:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。