Coronary Artery Disease Classification Using One-dimensional Convolutional Neural Network
- URL: http://arxiv.org/abs/2406.16895v1
- Date: Wed, 15 May 2024 13:51:02 GMT
- Title: Coronary Artery Disease Classification Using One-dimensional Convolutional Neural Network
- Authors: Atitaya Phoemsuk, Vahid Abolghasemi,
- Abstract summary: Coronary Artery Disease (CAD) diagnostic to be a major global cause of death, necessitating innovative solutions.
We propose the potential of one-dimensional convolutional neural networks (1D-CNN) to enhance detection accuracy and reduce network complexity.
This study goes beyond traditional diagnostic methodologies, leveraging the remarkable ability of 1D-CNN to interpret complex patterns within Electrocardiogram (ECG) signals without depending on feature extraction techniques.
- Score: 0.7673339435080443
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Coronary Artery Disease (CAD) diagnostic to be a major global cause of death, necessitating innovative solutions. Addressing the critical importance of early CAD detection and its impact on the mortality rate, we propose the potential of one-dimensional convolutional neural networks (1D-CNN) to enhance detection accuracy and reduce network complexity. This study goes beyond traditional diagnostic methodologies, leveraging the remarkable ability of 1D-CNN to interpret complex patterns within Electrocardiogram (ECG) signals without depending on feature extraction techniques. We explore the impact of varying sample lengths on model performance and conduct experiments involving layers reduction. The ECG data employed were obtained from the PhysioNet databases, namely the MIMIC III and Fantasia datasets, with respective sampling frequencies of 125 Hz and 250 Hz. The highest accuracy for unseen data obtained with a sample length of 250. These initial findings demonstrate the potential of 1D-CNNs in CAD diagnosis using ECG signals and highlight the sample size's role in achieving high accuracy.
Related papers
- DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - AI Framework for Early Diagnosis of Coronary Artery Disease: An
Integration of Borderline SMOTE, Autoencoders and Convolutional Neural
Networks Approach [0.44998333629984877]
We develop a methodology for balancing and augmenting data for more accurate prediction when the data is imbalanced and the sample size is small.
The experimental results revealed that the average accuracy of our proposed method for CAD prediction was 95.36, and was higher than random forest (RF), decision tree (DT), support vector machine (SVM), logistic regression (LR), and artificial neural network (ANN)
arXiv Detail & Related papers (2023-08-29T14:33:38Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
Existing databases for ECG delineation are small, being insufficient in size and in the array of pathological conditions they represent.
This article delves has two main contributions. First, a pseudo-synthetic data generation algorithm was developed, based in probabilistically composing ECG traces given "pools" of fundamental segments, as cropped from the original databases, and a set of rules for their arrangement into coherent synthetic traces.
Second, two novel segmentation-based loss functions have been developed, which attempt at enforcing the prediction of an exact number of independent structures and at producing closer segmentation boundaries by focusing on a reduced number of samples.
arXiv Detail & Related papers (2021-11-25T10:11:41Z) - A Regularization Method to Improve Adversarial Robustness of Neural
Networks for ECG Signal Classification [1.8579693774597703]
Electrocardiogram (ECG) is the most widely used diagnostic tool to monitor the condition of the human heart.
Deep neural networks (DNNs) interpretation of ECG signals can be fully automated for the identification of potential abnormalities in a patient's heart in a fraction of a second.
DNNs are highly vulnerable to adversarial noises that are subtle changes in the input of a DNN and may lead to a wrong class-label prediction.
We propose a regularization method to improve robustness from the perspective of noise-to-signal ratio (NSR) for the application of ECG signal classification.
arXiv Detail & Related papers (2021-10-19T06:22:02Z) - CRT-Net: A Generalized and Scalable Framework for the Computer-Aided
Diagnosis of Electrocardiogram Signals [6.359424209413513]
We develop a robust and scalable framework for the clinical recognition of ECG.
A novel deep neural network, namely CRT-Net, is designed for the fine-grained and comprehensive representation and recognition of 1-D ECG signals.
arXiv Detail & Related papers (2021-05-28T06:56:06Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - Atrial Fibrillation Detection and ECG Classification based on CNN-BiLSTM [3.1372269816123994]
It is challenging to visually detect heart disease from the electrocardiographic (ECG) signals.
Implementing an automated ECG signal detection system can help diagnosis arrhythmia in order to improve the accuracy of diagnosis.
arXiv Detail & Related papers (2020-11-12T04:20:56Z) - Identification of Ischemic Heart Disease by using machine learning
technique based on parameters measuring Heart Rate Variability [50.591267188664666]
In this study, 18 non-invasive features (age, gender, left ventricular ejection fraction and 15 obtained from HRV) of 243 subjects were used to train and validate a series of several ANN.
The best result was obtained using 7 input parameters and 7 hidden nodes with an accuracy of 98.9% and 82% for the training and validation dataset.
arXiv Detail & Related papers (2020-10-29T19:14:41Z) - DENS-ECG: A Deep Learning Approach for ECG Signal Delineation [15.648061765081264]
This paper proposes a deep learning model for real-time segmentation of heartbeats.
The proposed algorithm, named as the DENS-ECG algorithm, combines convolutional neural network (CNN) and long short-term memory (LSTM) model.
arXiv Detail & Related papers (2020-05-18T13:13:41Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z) - Spatio-spectral deep learning methods for in-vivo hyperspectral
laryngeal cancer detection [49.32653090178743]
Early detection of head and neck tumors is crucial for patient survival.
Hyperspectral imaging (HSI) can be used for non-invasive detection of head and neck tumors.
We present multiple deep learning techniques for in-vivo laryngeal cancer detection based on HSI.
arXiv Detail & Related papers (2020-04-21T17:07:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.