Learning Exemplar Representations in Single-Trial EEG Category Decoding
- URL: http://arxiv.org/abs/2406.16902v1
- Date: Fri, 31 May 2024 18:51:10 GMT
- Title: Learning Exemplar Representations in Single-Trial EEG Category Decoding
- Authors: Jack Kilgallen, Barak Pearlmutter, Jeffery Mark Siskind,
- Abstract summary: We show that when trials relating to a single object are allowed to appear in both the training and testing sets, almost any classification algorithm is capable of learning the representation of an object given only category labels.
We demonstrate the ability of both simple classification algorithms, and sophisticated deep learning models, to learn object representations given only category labels.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Within neuroimgaing studies it is a common practice to perform repetitions of trials in an experiment when working with a noisy class of data acquisition system, such as electroencephalography (EEG) or magnetoencephalography (MEG). While this approach can be useful in some experimental designs, it presents significant limitations for certain types of analyses, such as identifying the category of an object observed by a subject. In this study we demonstrate that when trials relating to a single object are allowed to appear in both the training and testing sets, almost any classification algorithm is capable of learning the representation of an object given only category labels. This ability to learn object representations is of particular significance as it suggests that the results of several published studies which predict the category of observed objects from EEG signals may be affected by a subtle form of leakage which has inflated their reported accuracies. We demonstrate the ability of both simple classification algorithms, and sophisticated deep learning models, to learn object representations given only category labels. We do this using two datasets; the Kaneshiro et al. (2015) dataset and the Gifford et al. (2022) dataset. Our results raise doubts about the true generalizability of several published models and suggests that the reported performance of these models may be significantly inflated.
Related papers
- Preview-based Category Contrastive Learning for Knowledge Distillation [53.551002781828146]
We propose a novel preview-based category contrastive learning method for knowledge distillation (PCKD)
It first distills the structural knowledge of both instance-level feature correspondence and the relation between instance features and category centers.
It can explicitly optimize the category representation and explore the distinct correlation between representations of instances and categories.
arXiv Detail & Related papers (2024-10-18T03:31:00Z) - Towards the Visualization of Aggregated Class Activation Maps to Analyse
the Global Contribution of Class Features [0.47248250311484113]
Class Activation Maps (CAMs) visualizes the importance of each feature of a data sample contributing to the classification.
We aggregate CAMs from multiple samples to show a global explanation of the classification for semantically structured data.
Our approach allows an analyst to detect important features of high-dimensional data and derive adjustments to the AI model based on our global explanation visualization.
arXiv Detail & Related papers (2023-07-29T11:13:11Z) - CCRL: Contrastive Cell Representation Learning [0.0]
We propose Contrastive Cell Representation Learning (CCRL) model for cell identification in H&E slides.
We show that this model can outperform all currently available cell clustering models by a large margin across two datasets from different tissue types.
arXiv Detail & Related papers (2022-08-12T18:12:03Z) - The Overlooked Classifier in Human-Object Interaction Recognition [82.20671129356037]
We encode the semantic correlation among classes into the classification head by initializing the weights with language embeddings of HOIs.
We propose a new loss named LSE-Sign to enhance multi-label learning on a long-tailed dataset.
Our simple yet effective method enables detection-free HOI classification, outperforming the state-of-the-arts that require object detection and human pose by a clear margin.
arXiv Detail & Related papers (2022-03-10T23:35:00Z) - Closing the Generalization Gap in One-Shot Object Detection [92.82028853413516]
We show that the key to strong few-shot detection models may not lie in sophisticated metric learning approaches, but instead in scaling the number of categories.
Future data annotation efforts should therefore focus on wider datasets and annotate a larger number of categories.
arXiv Detail & Related papers (2020-11-09T09:31:17Z) - Few-Shot Object Detection via Knowledge Transfer [21.3564383157159]
Conventional methods for object detection usually require substantial amounts of training data and annotated bounding boxes.
In this paper, we introduce a few-shot object detection via knowledge transfer, which aims to detect objects from a few training examples.
arXiv Detail & Related papers (2020-08-28T06:35:27Z) - Dataset Bias in Few-shot Image Recognition [57.25445414402398]
We first investigate the impact of transferable capabilities learned from base categories.
Second, we investigate performance differences on different datasets from dataset structures and different few-shot learning methods.
arXiv Detail & Related papers (2020-08-18T14:46:23Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
Supervised learning paradigms are often limited by the amount of labeled data that is available.
This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG)
By extracting information from unlabeled data, it might be possible to reach competitive performance with deep neural networks.
arXiv Detail & Related papers (2020-07-31T14:34:47Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
We propose an auxiliary training objective that improves the generalization capabilities of neural networks.
We use pairs of minimally-different examples with different labels, a.k.a counterfactual or contrasting examples, which provide a signal indicative of the underlying causal structure of the task.
Models trained with this technique demonstrate improved performance on out-of-distribution test sets.
arXiv Detail & Related papers (2020-04-20T02:47:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.