Towards the Visualization of Aggregated Class Activation Maps to Analyse
the Global Contribution of Class Features
- URL: http://arxiv.org/abs/2308.00710v1
- Date: Sat, 29 Jul 2023 11:13:11 GMT
- Title: Towards the Visualization of Aggregated Class Activation Maps to Analyse
the Global Contribution of Class Features
- Authors: Igor Cherepanov, David Sessler, Alex Ulmer, Hendrik L\"ucke-Tieke,
J\"orn Kohlhammer
- Abstract summary: Class Activation Maps (CAMs) visualizes the importance of each feature of a data sample contributing to the classification.
We aggregate CAMs from multiple samples to show a global explanation of the classification for semantically structured data.
Our approach allows an analyst to detect important features of high-dimensional data and derive adjustments to the AI model based on our global explanation visualization.
- Score: 0.47248250311484113
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deep learning (DL) models achieve remarkable performance in classification
tasks. However, models with high complexity can not be used in many
risk-sensitive applications unless a comprehensible explanation is presented.
Explainable artificial intelligence (xAI) focuses on the research to explain
the decision-making of AI systems like DL. We extend a recent method of Class
Activation Maps (CAMs) which visualizes the importance of each feature of a
data sample contributing to the classification. In this paper, we aggregate
CAMs from multiple samples to show a global explanation of the classification
for semantically structured data. The aggregation allows the analyst to make
sophisticated assumptions and analyze them with further drill-down
visualizations. Our visual representation for the global CAM illustrates the
impact of each feature with a square glyph containing two indicators. The color
of the square indicates the classification impact of this feature. The size of
the filled square describes the variability of the impact between single
samples. For interesting features that require further analysis, a detailed
view is necessary that provides the distribution of these values. We propose an
interactive histogram to filter samples and refine the CAM to show relevant
samples only. Our approach allows an analyst to detect important features of
high-dimensional data and derive adjustments to the AI model based on our
global explanation visualization.
Related papers
- Integrated feature analysis for deep learning interpretation and class activation maps [1.5943223374606597]
We propose an integrated feature analysis method to look closer into the intermediate features extracted by deep learning models.
This integrated feature analysis could provide information on overfitting, confounders, outliers in datasets.
The method was evaluated by calculating the consistency between the CAMs average class activation levels and the logits of the model.
arXiv Detail & Related papers (2024-07-01T10:10:57Z) - Accurate Explanation Model for Image Classifiers using Class Association Embedding [5.378105759529487]
We propose a generative explanation model that combines the advantages of global and local knowledge.
Class association embedding (CAE) encodes each sample into a pair of separated class-associated and individual codes.
Building-block coherency feature extraction algorithm is proposed that efficiently separates class-associated features from individual ones.
arXiv Detail & Related papers (2024-06-12T07:41:00Z) - An Information Compensation Framework for Zero-Shot Skeleton-based Action Recognition [49.45660055499103]
Zero-shot human skeleton-based action recognition aims to construct a model that can recognize actions outside the categories seen during training.
Previous research has focused on aligning sequences' visual and semantic spatial distributions.
We introduce a new loss function sampling method to obtain a tight and robust representation.
arXiv Detail & Related papers (2024-06-02T06:53:01Z) - Neural Clustering based Visual Representation Learning [61.72646814537163]
Clustering is one of the most classic approaches in machine learning and data analysis.
We propose feature extraction with clustering (FEC), which views feature extraction as a process of selecting representatives from data.
FEC alternates between grouping pixels into individual clusters to abstract representatives and updating the deep features of pixels with current representatives.
arXiv Detail & Related papers (2024-03-26T06:04:50Z) - Self-Supervised Representation Learning with Meta Comprehensive
Regularization [11.387994024747842]
We introduce a module called CompMod with Meta Comprehensive Regularization (MCR), embedded into existing self-supervised frameworks.
We update our proposed model through a bi-level optimization mechanism, enabling it to capture comprehensive features.
We provide theoretical support for our proposed method from information theory and causal counterfactual perspective.
arXiv Detail & Related papers (2024-03-03T15:53:48Z) - A Unified Interactive Model Evaluation for Classification, Object
Detection, and Instance Segmentation in Computer Vision [31.441561710096877]
We develop an open-source visual analysis tool, Uni-Evaluator, to support a unified model evaluation for classification, object detection, and instance segmentation in computer vision.
The key idea behind our method is to formulate both discrete and continuous predictions in different tasks as unified probability distributions.
Based on these distributions, we develop 1) a matrix-based visualization to provide an overview of model performance; 2) a table visualization to identify the problematic data subsets where the model performs poorly; and 3) a grid visualization to display the samples of interest.
arXiv Detail & Related papers (2023-08-09T18:11:28Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
Self-supervision based on the information extracted from large knowledge graphs has been shown to improve the generalization of language models.
We study the effect of knowledge sampling strategies and sizes that can be used to generate synthetic data for adapting language models.
arXiv Detail & Related papers (2022-05-21T19:49:04Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
We propose a new learning paradigm with graph representation and learning.
Our framework contains two modules: 1) a backbone network (e.g., feedforward neural nets) as a lower model takes features as input and outputs predicted labels; 2) a graph neural network as an upper model learns to extrapolate embeddings for new features via message passing over a feature-data graph built from observed data.
arXiv Detail & Related papers (2021-10-09T09:02:45Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
We propose an auxiliary training objective that improves the generalization capabilities of neural networks.
We use pairs of minimally-different examples with different labels, a.k.a counterfactual or contrasting examples, which provide a signal indicative of the underlying causal structure of the task.
Models trained with this technique demonstrate improved performance on out-of-distribution test sets.
arXiv Detail & Related papers (2020-04-20T02:47:49Z) - Adaptive Object Detection with Dual Multi-Label Prediction [78.69064917947624]
We propose a novel end-to-end unsupervised deep domain adaptation model for adaptive object detection.
The model exploits multi-label prediction to reveal the object category information in each image.
We introduce a prediction consistency regularization mechanism to assist object detection.
arXiv Detail & Related papers (2020-03-29T04:23:22Z) - FDive: Learning Relevance Models using Pattern-based Similarity Measures [27.136998442865217]
We present FDive, a visual active learning system that helps to create visually explorable relevance models.
Based on the best-ranked similarity measure, the system calculates an interactive Self-Organizing Map-based relevance model.
It also automatically prompts further relevance feedback to improve its accuracy.
arXiv Detail & Related papers (2019-07-29T15:37:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.