Evaluating the Influence of Temporal Context on Automatic Mouse Sleep Staging through the Application of Human Models
- URL: http://arxiv.org/abs/2406.16911v1
- Date: Thu, 6 Jun 2024 10:07:19 GMT
- Title: Evaluating the Influence of Temporal Context on Automatic Mouse Sleep Staging through the Application of Human Models
- Authors: Javier García Ciudad, Morten Mørup, Birgitte Rahbek Kornum, Alexander Neergaard Zahid,
- Abstract summary: In human sleep staging models, augmenting the temporal context of the input to the range of tens of minutes has recently demonstrated performance improvement.
While long-term time patterns are less clear in mouse sleep, increasing the temporal context further than that of the current mouse sleep staging models might still result in a performance increase.
- Score: 43.40222422022386
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In human sleep staging models, augmenting the temporal context of the input to the range of tens of minutes has recently demonstrated performance improvement. In contrast, the temporal context of mouse sleep staging models is typically in the order of tens of seconds. While long-term time patterns are less clear in mouse sleep, increasing the temporal context further than that of the current mouse sleep staging models might still result in a performance increase, given that the current methods only model very short term patterns. In this study, we examine the influence of increasing the temporal context in mouse sleep staging up to 15 minutes in three mouse cohorts using two recent and high-performing human sleep staging models that account for long-term dependencies. These are compared to two prominent mouse sleep staging models that use a local context of 12 s and 20 s, respectively. An increase in context up to 28 s is observed to have a positive impact on sleep stage classification performance, especially in REM sleep. However, the impact is limited for longer context windows. One of the human sleep scoring models, L-SeqSleepNet, outperforms both mouse models in all cohorts. This suggests that mouse sleep staging can benefit from more temporal context than currently used.
Related papers
- LG-Sleep: Local and Global Temporal Dependencies for Mice Sleep Scoring [0.3141085922386211]
This study introduces LG-Sleep, a novel subject-independent deep neural network architecture designed for mice sleep scoring through electroencephalogram (EEG) signals.
LG-Sleep extracts local and global temporal transitions within EEG signals to categorize sleep data into three stages: wake, rapid eye movement (REM) sleep, and non-rapid eye movement (NREM) sleep.
arXiv Detail & Related papers (2024-12-19T21:39:57Z) - Stuffed Mamba: State Collapse and State Capacity of RNN-Based Long-Context Modeling [69.36377985746878]
We study the cause of the inability to process long context for RNNs and suggest critical mitigations.
We first investigate *state collapse* (SC), a phenomenon that causes severe performance degradation on sequence lengths not encountered during training.
We train a series of Mamba-2 models on long documents to empirically estimate the recurrent state capacity in language modeling and passkey retrieval.
arXiv Detail & Related papers (2024-10-09T17:54:28Z) - SleepPPG-Net2: Deep learning generalization for sleep staging from photoplethysmography [0.7927502566022343]
Sleep staging is a fundamental component in the diagnosis of sleep disorders and the management of sleep health.
Recent data-driven algorithms for sleep staging have shown high performance on local test sets but lower performance on external datasets.
Sleep-Net2 sets a new standard for staging sleep from raw PPG time-series.
arXiv Detail & Related papers (2024-04-10T09:47:34Z) - Similarity Min-Max: Zero-Shot Day-Night Domain Adaptation [52.923298434948606]
Low-light conditions not only hamper human visual experience but also degrade the model's performance on downstream vision tasks.
This paper challenges a more complicated scenario with border applicability, i.e., zero-shot day-night domain adaptation.
We propose a similarity min-max paradigm that considers them under a unified framework.
arXiv Detail & Related papers (2023-07-17T18:50:15Z) - Quantifying the Impact of Data Characteristics on the Transferability of
Sleep Stage Scoring Models [0.10878040851637998]
Deep learning models for scoring sleep stages based on single-channel EEG have been proposed as a promising method for remote sleep monitoring.
Applying these models to new datasets, particularly from wearable devices, raises two questions.
First, when annotations on a target dataset are unavailable, which different data characteristics affect the sleep stage scoring performance the most and by how much?
We propose a novel method for quantifying the impact of different data characteristics on the transferability of deep learning models.
arXiv Detail & Related papers (2023-03-28T07:57:21Z) - L-SeqSleepNet: Whole-cycle Long Sequence Modelling for Automatic Sleep
Staging [16.96499618061823]
L-SeqSleepNet is a new deep learning model that takes into account whole-cycle sleep information for sleep staging.
L-SeqSleepNet is able to alleviate the predominance of N2 sleep to bring down errors in other sleep stages.
arXiv Detail & Related papers (2023-01-09T15:44:43Z) - STAR: Sparse Transformer-based Action Recognition [61.490243467748314]
This work proposes a novel skeleton-based human action recognition model with sparse attention on the spatial dimension and segmented linear attention on the temporal dimension of data.
Experiments show that our model can achieve comparable performance while utilizing much less trainable parameters and achieve high speed in training and inference.
arXiv Detail & Related papers (2021-07-15T02:53:11Z) - Automated scoring of pre-REM sleep in mice with deep learning [0.0]
We propose a classification system based on a simple neural network architecture that scores the classical stages as well as pre-REM sleep in mice.
When restricted to the classical stages, the optimized network showed state-of-the-art classification performance with an out-of-sample F1 score of 0.95.
Our findings provide further evidence for the difficulty of scoring transitional sleep stages, likely because such stages are under-represented in typical data sets or show large inter-scorer variability.
arXiv Detail & Related papers (2021-05-05T09:03:03Z) - MSED: a multi-modal sleep event detection model for clinical sleep
analysis [62.997667081978825]
We designed a single deep neural network architecture to jointly detect sleep events in a polysomnogram.
The performance of the model was quantified by F1, precision, and recall scores, and by correlating index values to clinical values.
arXiv Detail & Related papers (2021-01-07T13:08:44Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
We propose a higher-order LSTM model that can efficiently learn long-term correlations in the video sequence.
This is accomplished through a novel tensor train module that performs prediction by combining convolutional features across time.
Our results achieve state-of-the-art performance-art in a wide range of applications and datasets.
arXiv Detail & Related papers (2020-02-21T05:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.