LG-Sleep: Local and Global Temporal Dependencies for Mice Sleep Scoring
- URL: http://arxiv.org/abs/2412.15412v1
- Date: Thu, 19 Dec 2024 21:39:57 GMT
- Title: LG-Sleep: Local and Global Temporal Dependencies for Mice Sleep Scoring
- Authors: Shadi Sartipi, Mie Andersen, Natalie Hauglund, Celia Kjaerby, Verena Untiet, Maiken Nedergaard, Mujdat Cetin,
- Abstract summary: This study introduces LG-Sleep, a novel subject-independent deep neural network architecture designed for mice sleep scoring through electroencephalogram (EEG) signals.
LG-Sleep extracts local and global temporal transitions within EEG signals to categorize sleep data into three stages: wake, rapid eye movement (REM) sleep, and non-rapid eye movement (NREM) sleep.
- Score: 0.3141085922386211
- License:
- Abstract: Efficiently identifying sleep stages is crucial for unraveling the intricacies of sleep in both preclinical and clinical research. The labor-intensive nature of manual sleep scoring, demanding substantial expertise, has prompted a surge of interest in automated alternatives. Sleep studies in mice play a significant role in understanding sleep patterns and disorders and underscore the need for robust scoring methodologies. In response, this study introduces LG-Sleep, a novel subject-independent deep neural network architecture designed for mice sleep scoring through electroencephalogram (EEG) signals. LG-Sleep extracts local and global temporal transitions within EEG signals to categorize sleep data into three stages: wake, rapid eye movement (REM) sleep, and non-rapid eye movement (NREM) sleep. The model leverages local and global temporal information by employing time-distributed convolutional neural networks to discern local temporal transitions in EEG data. Subsequently, features derived from the convolutional filters traverse long short-term memory blocks, capturing global transitions over extended periods. Crucially, the model is optimized in an autoencoder-decoder fashion, facilitating generalization across distinct subjects and adapting to limited training samples. Experimental findings demonstrate superior performance of LG-Sleep compared to conventional deep neural networks. Moreover, the model exhibits good performance across different sleep stages even when tasked with scoring based on limited training samples.
Related papers
- REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
This paper introduces a novel graph-based residual state update mechanism (REST) for real-time EEG signal analysis.
By leveraging a combination of graph neural networks and recurrent structures, REST efficiently captures both non-Euclidean geometry and temporal dependencies within EEG data.
Our model demonstrates high accuracy in both seizure detection and classification tasks.
arXiv Detail & Related papers (2024-06-03T16:30:19Z) - TC-LIF: A Two-Compartment Spiking Neuron Model for Long-Term Sequential
Modelling [54.97005925277638]
The identification of sensory cues associated with potential opportunities and dangers is frequently complicated by unrelated events that separate useful cues by long delays.
It remains a challenging task for state-of-the-art spiking neural networks (SNNs) to establish long-term temporal dependency between distant cues.
We propose a novel biologically inspired Two-Compartment Leaky Integrate-and-Fire spiking neuron model, dubbed TC-LIF.
arXiv Detail & Related papers (2023-08-25T08:54:41Z) - Convolutional Monge Mapping Normalization for learning on sleep data [63.22081662149488]
We propose a new method called Convolutional Monge Mapping Normalization (CMMN)
CMMN consists in filtering the signals in order to adapt their power spectrum density (PSD) to a Wasserstein barycenter estimated on training data.
Numerical experiments on sleep EEG data show that CMMN leads to significant and consistent performance gains independent from the neural network architecture.
arXiv Detail & Related papers (2023-05-30T08:24:01Z) - Sleep Model -- A Sequence Model for Predicting the Next Sleep Stage [18.059360820527687]
Sleep-stage classification using simple sensors, such as single-channel electroencephalography (EEG), electrooculography (EOG), electromyography (EMG) or electrocardiography (ECG) has gained substantial interest.
In this study, we proposed a sleep model that predicts the next sleep stage and used it to improve sleep classification accuracy.
arXiv Detail & Related papers (2023-02-17T07:37:54Z) - L-SeqSleepNet: Whole-cycle Long Sequence Modelling for Automatic Sleep
Staging [16.96499618061823]
L-SeqSleepNet is a new deep learning model that takes into account whole-cycle sleep information for sleep staging.
L-SeqSleepNet is able to alleviate the predominance of N2 sleep to bring down errors in other sleep stages.
arXiv Detail & Related papers (2023-01-09T15:44:43Z) - ProductGraphSleepNet: Sleep Staging using Product Spatio-Temporal Graph
Learning with Attentive Temporal Aggregation [4.014524824655106]
This work proposes an adaptive product graph learning-based graph convolutional network, named ProductGraphSleepNet, for learning joint-temporal graphs.
The proposed network makes it possible for clinicians to comprehend and interpret the learned connectivity graphs for sleep stages.
arXiv Detail & Related papers (2022-12-09T14:34:58Z) - Continual learning benefits from multiple sleep mechanisms: NREM, REM,
and Synaptic Downscaling [51.316408685035526]
Learning new tasks and skills in succession without losing prior learning is a computational challenge for both artificial and biological neural networks.
Here, we investigate how modeling three distinct components of mammalian sleep together affects continual learning in artificial neural networks.
arXiv Detail & Related papers (2022-09-09T13:45:27Z) - TransSleep: Transitioning-aware Attention-based Deep Neural Network for
Sleep Staging [2.105172041656126]
We propose a novel deep neural network structure, TransSleep, that captures distinctive local temporal patterns.
Results show that TransSleep achieves promising performance in automatic sleep staging.
arXiv Detail & Related papers (2022-03-22T08:55:32Z) - Automated scoring of pre-REM sleep in mice with deep learning [0.0]
We propose a classification system based on a simple neural network architecture that scores the classical stages as well as pre-REM sleep in mice.
When restricted to the classical stages, the optimized network showed state-of-the-art classification performance with an out-of-sample F1 score of 0.95.
Our findings provide further evidence for the difficulty of scoring transitional sleep stages, likely because such stages are under-represented in typical data sets or show large inter-scorer variability.
arXiv Detail & Related papers (2021-05-05T09:03:03Z) - Automatic detection of microsleep episodes with deep learning [55.41644538483948]
Brief fragments of sleep shorter than 15 s are defined as microsleep episodes (MSEs)
maintenance of wakefulness test (MWT) is often used in a clinical setting to assess vigilance.
MSEs are mostly not considered in the absence of established scoring criteria defining MSEs.
We aimed for automatic detection of MSEs with machine learning based on raw EEG and EOG data as input.
arXiv Detail & Related papers (2020-09-07T11:38:40Z) - Multi-Tones' Phase Coding (MTPC) of Interaural Time Difference by
Spiking Neural Network [68.43026108936029]
We propose a pure spiking neural network (SNN) based computational model for precise sound localization in the noisy real-world environment.
We implement this algorithm in a real-time robotic system with a microphone array.
The experiment results show a mean error azimuth of 13 degrees, which surpasses the accuracy of the other biologically plausible neuromorphic approach for sound source localization.
arXiv Detail & Related papers (2020-07-07T08:22:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.