EarDA: Towards Accurate and Data-Efficient Earable Activity Sensing
- URL: http://arxiv.org/abs/2406.16943v1
- Date: Tue, 18 Jun 2024 12:13:43 GMT
- Title: EarDA: Towards Accurate and Data-Efficient Earable Activity Sensing
- Authors: Shengzhe Lyu, Yongliang Chen, Di Duan, Renqi Jia, Weitao Xu,
- Abstract summary: Earable devices show significant changes in amplitudes and patterns, especially in the presence of dynamic and unpredictable head movements.
We present EarDA, an adversarial-based domain adaptation system to extract the domain-independent features across different sensor locations.
It achieves an accuracy of 88.8% under Human Activity Recognition task, demonstrating a significant 43% improvement over methods without domain adaptation.
- Score: 3.3690293278790415
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the realm of smart sensing with the Internet of Things, earable devices are empowered with the capability of multi-modality sensing and intelligence of context-aware computing, leading to its wide usage in Human Activity Recognition (HAR). Nonetheless, unlike the movements captured by Inertial Measurement Unit (IMU) sensors placed on the upper or lower body, those motion signals obtained from earable devices show significant changes in amplitudes and patterns, especially in the presence of dynamic and unpredictable head movements, posing a significant challenge for activity classification. In this work, we present EarDA, an adversarial-based domain adaptation system to extract the domain-independent features across different sensor locations. Moreover, while most deep learning methods commonly rely on training with substantial amounts of labeled data to offer good accuracy, the proposed scheme can release the potential usage of publicly available smartphone-based IMU datasets. Furthermore, we explore the feasibility of applying a filter-based data processing method to mitigate the impact of head movement. EarDA, the proposed system, enables more data-efficient and accurate activity sensing. It achieves an accuracy of 88.8% under HAR task, demonstrating a significant 43% improvement over methods without domain adaptation. This clearly showcases its effectiveness in mitigating domain gaps.
Related papers
- Active Learning for Derivative-Based Global Sensitivity Analysis with Gaussian Processes [70.66864668709677]
We consider the problem of active learning for global sensitivity analysis of expensive black-box functions.
Since function evaluations are expensive, we use active learning to prioritize experimental resources where they yield the most value.
We propose novel active learning acquisition functions that directly target key quantities of derivative-based global sensitivity measures.
arXiv Detail & Related papers (2024-07-13T01:41:12Z) - Sensor Data Augmentation from Skeleton Pose Sequences for Improving Human Activity Recognition [5.669438716143601]
Human Activity Recognition (HAR) has not fully capitalized on the proliferation of deep learning.
We propose a novel approach to improve wearable sensor-based HAR by introducing a pose-to-sensor network model.
Our contributions include the integration of simultaneous training, direct pose-to-sensor generation, and a comprehensive evaluation on the MM-Fit dataset.
arXiv Detail & Related papers (2024-04-25T10:13:18Z) - Know Thy Neighbors: A Graph Based Approach for Effective Sensor-Based
Human Activity Recognition in Smart Homes [0.0]
We propose a novel graph-guided neural network approach for Human Activity Recognition (HAR) in smart homes.
We accomplish this by learning a more expressive graph structure representing the sensor network in a smart home.
Our approach maps discrete input sensor measurements to a feature space through the application of attention mechanisms.
arXiv Detail & Related papers (2023-11-16T02:43:13Z) - A Real-time Human Pose Estimation Approach for Optimal Sensor Placement
in Sensor-based Human Activity Recognition [63.26015736148707]
This paper introduces a novel methodology to resolve the issue of optimal sensor placement for Human Activity Recognition.
The derived skeleton data provides a unique strategy for identifying the optimal sensor location.
Our findings indicate that the vision-based method for sensor placement offers comparable results to the conventional deep learning approach.
arXiv Detail & Related papers (2023-07-06T10:38:14Z) - TASKED: Transformer-based Adversarial learning for human activity
recognition using wearable sensors via Self-KnowledgE Distillation [6.458496335718508]
We propose a novel Transformer-based Adversarial learning framework for human activity recognition using wearable sensors via Self-KnowledgE Distillation (TASKED)
In the proposed method, we adopt the teacher-free self-knowledge distillation to improve the stability of the training procedure and the performance of human activity recognition.
arXiv Detail & Related papers (2022-09-14T11:08:48Z) - DAPPER: Label-Free Performance Estimation after Personalization for
Heterogeneous Mobile Sensing [95.18236298557721]
We present DAPPER (Domain AdaPtation Performance EstimatoR) that estimates the adaptation performance in a target domain with unlabeled target data.
Our evaluation with four real-world sensing datasets compared against six baselines shows that DAPPER outperforms the state-of-the-art baseline by 39.8% in estimation accuracy.
arXiv Detail & Related papers (2021-11-22T08:49:33Z) - Moving Object Classification with a Sub-6 GHz Massive MIMO Array using
Real Data [64.48836187884325]
Classification between different activities in an indoor environment using wireless signals is an emerging technology for various applications.
In this paper, we analyze classification of moving objects by employing machine learning on real data from a massive multi-input-multi-output (MIMO) system in an indoor environment.
arXiv Detail & Related papers (2021-02-09T15:48:35Z) - Semantics-aware Adaptive Knowledge Distillation for Sensor-to-Vision
Action Recognition [131.6328804788164]
We propose a framework, named Semantics-aware Adaptive Knowledge Distillation Networks (SAKDN), to enhance action recognition in vision-sensor modality (videos)
The SAKDN uses multiple wearable-sensors as teacher modalities and uses RGB videos as student modality.
arXiv Detail & Related papers (2020-09-01T03:38:31Z) - Sensor Data for Human Activity Recognition: Feature Representation and
Benchmarking [27.061240686613182]
The field of Human Activity Recognition (HAR) focuses on obtaining and analysing data captured from monitoring devices (e.g. sensors)
We address the issue of accurately recognising human activities using different Machine Learning (ML) techniques.
arXiv Detail & Related papers (2020-05-15T00:46:55Z) - A Deep Learning Method for Complex Human Activity Recognition Using
Virtual Wearable Sensors [22.923108537119685]
Sensor-based human activity recognition (HAR) is now a research hotspot in multiple application areas.
We propose a novel method based on deep learning for complex HAR in the real-scene.
The proposed method can surprisingly converge in a few iterations and achieve an accuracy of 91.15% on a real IMU dataset.
arXiv Detail & Related papers (2020-03-04T03:31:23Z) - Deep Learning based Pedestrian Inertial Navigation: Methods, Dataset and
On-Device Inference [49.88536971774444]
Inertial measurements units (IMUs) are small, cheap, energy efficient, and widely employed in smart devices and mobile robots.
Exploiting inertial data for accurate and reliable pedestrian navigation supports is a key component for emerging Internet-of-Things applications and services.
We present and release the Oxford Inertial Odometry dataset (OxIOD), a first-of-its-kind public dataset for deep learning based inertial navigation research.
arXiv Detail & Related papers (2020-01-13T04:41:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.